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Abstract

This bachelor thesis explores the relation between the disjunction and the numerical existence proper-
ties of extensions of arithmetic. It is shown that a recursively enumerable extension of (intuitionistic)
arithmetic fulfills the disjunction property if and only if it also fulfills the numerical existence property.
An analog result is shown for a modified version of these properties too, namely with a premise inserted
in front of the disjunction and the existence statements. Both proofs, which interestingly are based on
certain self referential sentences, are worked out in great detail. An analysis of the first proof, which
is based on Friedman’s proof given in [Fri75], discusses among other topics the establishment of the
numerical existence property for classes Σ0

n and Π0
n of formulae, as well as for Burr’s classification into

Φn-formulae ([Bur00]), which is more appropriate for intuitionistic logic. In this context, based on
[Lei85], it is also shown, that HA proves, that the disjunction property for disjunctions of Σ0

2-sentences
implies the numerical existence property of HA. Furthermore it is shown that if a recursively enumerable
extension of arithmetic proves its own disjunction property, then it also proves its own inconsistency.
This theorem, which again is due to [Fri75], is proven in great detail as well.
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1 Introduction

This thesis is essentially based on the article “The disjunction property implies the numerical existence
property” (denoted here by [Fri75]) authored by Harvey Friedman. This very short article was published
in Proceedings of the National Academy of Sciences of the United States of America in 1975 after being
communicated by Kurt Gödel (which indeed is remarkable).
The article is concerned with the disjunction and the numerical existence properties of extensions of
intuitionistic arithmetic. A theory T is said to have the disjunction property, if for all sentences A and B
the statement T ` A∨B implies that either T ` A or T ` B holds. T is said to have the numerical existence
property, if for any formula C (x), with no free variable other than x , the statement T ` ∃xC (x) implies
that there is a number n, such that T ` C (n) holds.
Friedman noticed that the disjunction and the numerical existence properties were established for vari-
ous extensions of arithmetic, such as HA itself, theories of functionals, second order arithmetic, the
theory of types, and set theories. Interestingly, in each case the numerical existence property was shown
utilizing the same methods that were used to show the disjunction property, such as cut elimination,
normalization, Kripke models, Kleene’s realizabilities, and Kleene’s |. This led to the conjecture that
in an arbitrary recursively enumerable extension of (intuitionistic) arithmetic the disjunction property
generally implies the numerical existence property (the converse is quite trivial). This conjecture as well
as its proof is the main topic of the article [Fri75].
After a short introduction of required definitions and lemmata in section 2, section 3 presents the above-
mentioned theorem with a detailed proof. Not only is the proof interesting because of the result it
establishes, but also because of the technique which it uses. Interestingly, Friedman’s proof is based on
several self referential sentences. But unlike the well-known proofs of the incompleteness theorems,
which too are based on self referential sentences, Friedman uses such sentences to show a "positive"
statement. That is, to establish the numerical existence property, which then implies the provability of
many sentences. In contrast, self referential sentences are usually employed to show something "negat-
ive", as for instance in the case of Gödel’s second incompleteness theorem to show the unprovability of
the sentence claiming the consistency of the theory.
Section 4 presents some corollaries of the proof given in section 3. Derivation of algorithms for the wit-
ness number from that proof is discussed; that is, algorithms to compute a witness number (or its upper
bound) for an existence statement out of the Gödel number of the proof of this statement. Furthermore,
we address the question of how the assumptions concerning the disjunction property can be weakened,
if one wants to prove the numerical existence property only for a fragment of the theory. For this purpose
different hierarchical classifications of formulae are presented and analyzed, namely the well-known Σ0

n-
and Π0

n-hierarchies, as well as a classification that fits better into the context of intuitionistic logic, the
so-called Φn-hierarchy which is due to [Bur00]. To some extent, the optimality of the obtained results
is discussed. Another subsection of section 4 discusses the relation of the disjunction and the numerical
existence properties of Heyting arithmetic. In particular, an interesting result which is due to [Lei85]
is presented. It states that Heyting arithmetic proves the following: “If Heyting arithmetic obeys the
disjunction property for disjunctions of Σ0

2-sentences then it has the numerical existence property”. This
consequence of the theorem from section 3 follows by the soundness of the q-realizability predicate. The
q-realizability predicate is introduced and its soundness is (succinctly) proven.
In section 5 a different version of the result of section 3 is shown. If instead of the disjunction property
of a recursively enumerable extension of (intuitionistic) arithmetic T we assume that for a formula P and
all sentences A and B the statement T ` P → A∨B implies that either T ` P → A or T ` P → B holds, then
T also fulfills the respective version (that is, with P as a premise) of the numerical existence property.
Interestingly, the proof of the theorem given in section 3 can be formalized in HA0, which is the same
as Heyting arithmetic, except that the induction schema is restricted to quantifier-free formulae. This al-
lows Friedman to easily prove a further theorem in [Fri75], which states that if a recursively enumerable
extension of (intuitionistic) arithmetic proves its own disjunction property, then it also proves its own
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inconsistency. Friedman’s rather succinct proof of this theorem is worked out in detail in section 6, the
final section of this thesis. Basically, the theorem of section 6 is a consequence of the theorem of section
3 and Löb’s theorem, which is also proven in section 6.

8



2 Preliminaries

In the following HA will denote the usual formulation of Heyting arithmetic, that is, intuitionistic first-
order arithmetic. HA is based on one-sorted intuitionistic predicate calculus with identity. Its language
contains a constant 0, distinct numerical variables w, x , y, z (also w′, x ′, y ′, z′, x0, x1, x2, . . .), a unary
function symbol S denoting the successor function, function symbols for all primitive recursive func-
tions.
Let HA0 be the same as HA, except that the induction schema is restricted to quantifier-free formulae.

Definition 2.1. A theory T is called an extension of arithmetic, if its axioms include those of HA0.

Furthermore, let PA denote the usual formulation of Peano arithmetic, which is HA plus the reductio-
ad-absurdum rule, or alternatively HA plus the law-of-excluded-middle schema.

2.1 Some properties of Heyting arithmetic

The following lemmata will be useful throughout this thesis.

Lemma 2.2. HA0 ` x = 0∨ x 6= 0.

Proof. This can be easily proven by the use of the induction scheme for quantifier-free formulae IS0 of
HA0.

0= 0
0= 0∨ 0 6= 0

[x = 0∨ x 6= 0](1)

S (x) 6= 0
S (x) = 0∨ S (x) 6= 0

(→-I)(1)x = 0∨ x 6= 0→ S (x) = 0∨ S (x) 6= 0
∀x (x = 0∨ x 6= 0→ S (x) = 0∨ S (x) 6= 0) IS0

∀x (x = 0∨ x 6= 0)

Lemma 2.3. Let A, B be formulae. It holds that

HA0 ` (A∨ B)↔∃x ((x = 0→ A)∧ (x 6= 0→ B)) .

Proof. HA0 ` (A∨ B)→∃x ((x = 0→ A)∧ (x 6= 0→ B)) holds by the following derivation.

A∨ B

[A]
0= 0→ A

0= 0
0 6= 0→⊥
0 6= 0→ B

(0= 0→ A)∧ (0 6= 0→ B)
∃x ((x = 0→ A)∧ (x 6= 0→ B))

S(0) 6= 0
S(0) = 0→⊥
S(0) = 0→ A

[B]
S(0) 6= 0→ B

(S(0) = 0→ A)∧ (S(0) 6= 0→ B)
∃x ((x = 0→ A)∧ (x 6= 0→ B))

(∨-E)
∃x ((x = 0→ A)∧ (x 6= 0→ B))

The converse can be shown as follows.

lemma 2.2
x = 0∨ x 6= 0

[(x = 0→ A)∧ (x 6= 0→ B)](2) [x = 0](1)

A
A∨ B

[(x = 0→ A)∧ (x 6= 0→ B)](2) [x 6= 0](1)

B
A∨ B

(∨-E)(1)A∨ B
(∃-E)(2), (→-I)∃x ((x = 0→ A)∧ (x 6= 0→ B))→ (A∨ B)
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2.2 Some important primitive recursive functions

The following results are well-known. Hence I refer to widely-used literature instead of proving these
results here.

Lemma 2.4. Let T be a recursively enumerable extension of arithmetic.

(i) There is an injective function p·q from the set of all formulae of T into N0. It is called the Gödel
numbering.

(ii) There are primitive recursive functions prfT , neg, sub, imp : N0→ N0 such that for any formulae A, B,
C = C (x) in the language of T, where C is a formula with no free variable other than x , it holds that

(1) T ` A if and only if there is a number n, such that prfT (n,pAq) = 0,

(2) neg (pAq) = p¬Aq,

(3) sub (pC (x)q) = pC
�

pC (x)q
�

q,

(4) imp (pAq,pBq) = pA→ Bq.

Proof. See section 3 in [Smo82].

Lemma 2.5. For each primitive recursive function f there is a primitive recursive function symbol f , such
that f (n) = m if and only if HA0 ` f (n) = m.

Proof. See section 3 in [Smo82].

For a given primitive recursive function f , from here on let f denote the corresponding function
symbol of T. That is, prfT , neg, sub, imp are the function symbols for prfT , neg, sub, imp respectively,
fulfilling the property indicated in lemma 2.5.

Definition 2.6 (Bounded Minimalization). For a function f : N0→ N0 and a y ∈ N0 let µx≤y
�

f (x) = 0
�

stand for the least x ∈ N0, such that x ≤ y and f (x) = 0, if such a number exists. Otherwise let
µx≤y

�

f (x) = 0
�

:= 0.

Lemma 2.7 (Bounded Minimalization). Let f : N0→ N0 be a primitive recursive function and let g : N0→
N0 be defined by g

�

y
�

:= µx≤y
�

f (x) = 0
�

. Then g is a primitive recursive function and it holds

(i) HA0 ` g
�

y
�

≤ y ,

(ii) HA0 ` f
�

y
�

= 0→ f
�

g
�

y
��

= 0,

(iii) HA0 ` z < g
�

y
�

→ f (z) 6= 0,

(iv) HA0 ` g
�

y
�

6= 0→ f
�

g
�

y
��

= 0,

(v) HA0 ` y ≤ z→ g
�

y
�

≤ g (z).

Proof. See section 2.9 in [Goo57].

2.3 Provability predicate

For a recursively enumerable extension of arithmetic T one can define a formula with a single free
variable, which given (the numeral of) the Gödel number of a formula A as input expresses that A is
provable in T. The provability predicate and its properties are presented below.
Later in this subsection the concept of a “Gödel number containing a free variable” is introduced. It
can be inserted into the provability predicate, which results in a formula with a single free variable.
Then some interesting properties of this formula, which are essential for the main proof of section 6, are
presented.
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Definition 2.8 (Provability Predicate). Let T be a recursively enumerable extension of arithmetic. Define

PrT
�

y
�

:≡ ∃x
�

prfT
�

x , y
�

= 0
�

.

PrT
�

y
�

is called provability predicate of T.

The provability predicate PrT
�

y
�

fulfills the so-called derivability conditions of Hilbert and Bernays.
Löb’s version of these important properties of PrT

�

y
�

is given in the following lemma.

Lemma 2.9 (Derivability Conditions). Let T be a recursively enumerable extension of arithmetic. Let A, B
be formulae.
PrT
�

y
�

has the following properties

(D1) : T ` A implies T ` PrT

�

pAq
�

,

(D2) : T ` PrT

�

pAq
�

→ PrT

�

pPrT

�

pAq
�

q
�

,

(D3) : T ` PrT

�

pAq
�

∧ PrT

�

pA→ Bq
�

→ PrT

�

pBq
�

.

Proof. In section 3 of [Smo82] the derivability conditions are formulated and (sketchily) proven for all
sentences A and B. Although Smorynski states the assertion only for sentences, the proof that he gives
works for open formulae as well. Furthermore, a very detailed proof of the derivability conditions for
all formulae (as required here) is given in section II.6 of [Tou03]. Also it could be noticed that both,
Smorynski and Tourlakis, assume T to be an extension of Peano arithmetic in their proofs. Nevertheless
both proofs work for extensions of HA0 as well.

Some further properties of PrT
�

y
�

, which will be used later in this thesis, are given in the following
lemma. Of course more properties of PrT

�

y
�

, that are similar to those presented below, can be proven
in the same manner as the presented.

Lemma 2.10. Let T be a recursively enumerable extension of arithmetic. Let A, B be arbitrary formulae and
let C(y) be a formula with a free variable y . Then it holds

(i) T ` PrT

�

pAq
�

→ PrT

�

pA∨ Bq
�

,

(ii) T ` PrT

�

pAq
�

∧ PrT

�

pBq
�

→ PrT

�

pA∧ Bq
�

,

(iii) T ` PrT

�

pA→⊥q
�

→ PrT

�

pA→ Bq
�

,

(iv) T ` PrT

�

pC(t)q
�

→ PrT

�

p∃yC(y)q
�

, where t is a term, which is free for y in C .

Proof. (i) The assertion follows from T ` A→ A∨ B by (D1) and (D3).

(ii) It holds T ` A→ (B→ A∧ B). By (D1) and (D3) it follows

T ` PrT

�

pAq
�

→ PrT

�

p(B→ A∧ B)q
�

.

Furthermore, by (D3) holds

T ` PrT

�

p(B→ A∧ B)q
�

∧ PrT

�

pBq
�

→ PrT

�

pA∧ Bq
�

.

The two statements yield the assertion.

(iii) It holds T ` (A→⊥)→ (A→ B). As before (D1) and (D3) imply the assertion.
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(iv) The assertion follows from T ` C(t)→∃yC(y) by (D1) and (D3).

Assume A(y) to be a formula of a recursively enumerable extension of arithmetic T with no free
variable other than y . By looking at how exactly the Gödel numbering is carried out (see for example
section 3 in [Smo82]) it becomes clear that a function f : N0 → N0 can be defined, such that f (n) =
pA(n)q for all n ∈ N0. That is, informally f (x) can be described as the “Gödel number” of A(x), but
where x is regarded as a free variable even though it is “inside” the Gödel numbering pq. Additionally it
turns out that such functions are primitive recursive.
The following lemma treats this observation in a formal manner.

Lemma 2.11 (The notation pA
�

ẏ
�

q). Let T be a recursively enumerable extension of arithmetic.

(i) There is a primitive recursive function s(x , y), such that for every formula A(z) with only z free and
every number n it holds

T ` s
�

pA(z)q, n
�

= pA(n)q.

(ii) Throughout this thesis the term s
�

pA(z)q, y
�

, which has y as a single free variable, is abbreviated by

pA
�

ẏ
�

q.

Proof. See section 3.2.2 in [Smo82], or pages 296-300 in [Tou03] for a more detailed explanation.

Thus, assuming A(y) to be a formula of a recursively enumerable extension of arithmetic T with no

free variable other than y , also PrT

�

pA( ẏ)q
�

is a formula with a single free variable y . The rest of this
subsection presents some important properties of such formulae.

Lemma 2.12. Let T be a recursively enumerable extension of arithmetic. Let f be a 1-ary primitive recursive
function. Then

T ` f (x) = 0→ PrT

�

p f ( ẋ) = 0q
�

.

In particular for any formula A it holds

T ` prfT

�

x ,pAq
�

= 0→ PrT

�

pprfT

�

ẋ ,pAq
�

= 0q
�

.

Proof. Section 3.2.5 in [Smo82] sketches a proof which proceeds by induction on the number of steps
needed to generate f . For a detailed version of the proof see section II.6.34 in [Tou03].

Lemma 2.13 (Free Variable Versions of (D1) and (D3)). Let T be a recursively enumerable extension of
arithmetic. Let A(x), B(x) be formulae with only x free. It holds that

(D1∗) : T ` A(x) implies T ` PrT

�

pA( ẋ)q
�

,

(D3∗) : T ` PrT

�

pA( ẋ)q
�

∧ PrT

�

pA( ẋ)→ B ( ẋ)q
�

→ PrT

�

pB ( ẋ)q
�

.

Proof. For (D1∗) see [Tou03] II.6.30 and for (D3∗) see [Tou03] II.6.31.

Now we can reformulate lemma 2.10 to a free variable version as well.

Corollary 2.14. Let T be a recursively enumerable extension of arithmetic. Let A(x), B(x) be formulae with
only x free. Then it holds that

(i) T ` PrT

�

pA( ẋ)q
�

→ PrT

�

pA( ẋ)∨ B ( ẋ)q
�

,
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(ii) T ` PrT

�

pA( ẋ)q
�

∧ PrT

�

pB ( ẋ)q
�

→ PrT

�

pA( ẋ)∧ B ( ẋ)q
�

,

(iii) T ` PrT

�

pA( ẋ)→⊥q
�

→ PrT

�

pA( ẋ)→ B ( ẋ)q
�

.

Proof. Just substitute (D1∗) and (D3∗) for (D1) and (D3) respectively in the proof of lemma 2.10
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3 The numerical existence property is equivalent to the disjunction property

Let us begin with a definition of the properties in question.

Definition 3.1 (Disjunction Property, Numerical Existence Property). An extension of arithmetic T is said
to have the disjunction property (abbr.: DP), if for all sentences A and B the statement T ` A∨ B implies
that either T ` A or T ` B holds.
T is said to have the numerical existence property (abbr.: NEP), if for any formula A(x) with no free
variable other than x the statement T ` ∃xA(x) implies that there is a number n, such that T ` A(n)
holds.

It is easy to see that the numerical existence property of an extension of arithmetic implies its disjunc-
tion property (just apply lemma 2.3). More surprisingly it turns out that every recursively enumerable
extension of arithmetic which obeys the disjunction property, also obeys the numerical existence prop-
erty. A proof of this assumption was given in the article [Fri75]. The objective of this section is to
formalize the rather short proof given there in a more detailed way.

Friedman’s proof is based on several self referential sentences that stated in colloquial language are
similar to:

“Either the Gödel number of any proof of this sentence is an upper bound for some n such that
P(n) is provable, or it is an upper bound for the Gödel number of some proof of the negation of
this sentence.”

For now, let us call this sentence A. Using the disjunction property one could derive from a proof of A
either an n such that T ` P(n) or a proof of ¬A, because either n or the Gödel number of a proof of ¬A
would be bounded by the Gödel number of the proof of A. Otherwise, from a proof of ¬A one could
derive a proof of A, because either the Gödel number of any proof of A would be such as required in the
statement of A (that is, if each number, which is smaller than the Gödel number of the proof of ¬A, is
not a Gödel number of a proof of A), or a proof of A would be known (that is, if there exists a proof of
A with a Gödel number smaller than the number of the proof of ¬A). Thus, in order to find an n such
that T ` P(n), it would be sufficient to establish T ` ∃yP(y)→ A∨ ¬A. Unfortunately this turns out to
be false in general. Therefore the proof presented here is not as simple as the concept outlined just now,
which nevertheless expresses the basic idea of the proof.
The following lemma will be used in the proof.

Lemma 3.2. Let T be an extension of arithmetic. Let C(y) be a formula with a free variable y . Then for an
arbitrary number j holds

(i) T ` y ≤ j ∧ C
�

y
�

→
∨

i≤ j C
�

i
�

,

(ii) T `
∧

i< j C
�

i
�

→
�

y < j→ C
�

y
�

�

.

Proof. (i) Apply induction on j.
Clearly, T ` y ≤ 0∧ C

�

y
�

→ C (0). Further, if (i) holds for some j then it holds for S
�

j
�

as well:

y ≤ S
�

j
�

∧ C
�

y
�

C
�

y
�

�

y = S
�

j
��

C
�

S
�

j
��

∨

i≤S( j) C
�

i
�

y ≤ S
�

j
�

∧ C
�

y
�

C
�

y
�

�

y ≤ j
�

(I.H.)∨

i≤ j C
�

i
�

∨

i≤S( j) C
�

i
�

(∨-E)∨

i≤S( j) C
�

i
�
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where T ` y ≤ S
�

j
�

↔ y ≤ j ∨ y = S
�

j
�

was used to apply the (∨-E)-rule.

(ii) Again apply induction on j.
If j = 0 it is to show that T ` y < 0→ C

�

y
�

, which follows at once from T ` y < 0→ ⊥. And if
(ii) holds for some j, then it holds for S

�

j
�

as well:

∧

i<S( j) C
�

i
�

C
�

j
� �

y = j
�

C
�

y
�

�

y < j
�

∧

i<S( j) C
�

i
�

∧

i< j C
�

i
�

(I.H.)
y < j→ C

�

y
�

C
�

y
�

(∨-E)
y < S

�

j
�

→ C
�

y
�

where T ` y < S
�

j
�

↔ y < j ∨ y = j was used for the (∨-E)-rule.

Theorem 3.3 (DP ⇔ NEP. Due to [Fri75]). Let T be a recursively enumerable extension of arithmetic.
Then T obeys the numerical existence property if and only if T obeys the disjunction property.

Proof. Let T be a recursively enumerable extension of arithmetic, which obeys the disjunction property.
Let P

�

y
�

be a formula with no free variable other than y . Let AP (x) denote the formula

∃y
��

prfT
�

y, neg (x)
�

= 0∨ P
�

y
�

�

∧∀z
�

prfT (z, x) = 0→ y ≤ z
��

.

Let k := pAP

�

sub (x)
�

q. Then pAP

�

sub
�

k
��

q= sub (k).
Let Q

�

y
�

denote the formula prfT

�

y, sub
�

k
��

= 0. Let AQ (x) be the same formula as AP (x), except
that Q is substituted for P, i.e.

∃y
��

prfT
�

y, neg (x)
�

= 0∨ prfT

�

y, sub
�

k
��

= 0
�

∧∀z
�

prfT (z, x) = 0→ y ≤ z
��

.

As above, choose a number l such that pAQ

�

sub
�

l
��

q= sub (l).

Claim 1: T ` ∃yP
�

y
�

→ AP

�

sub
�

k
��

∨ AQ

�

sub
�

l
��

∨¬AQ

�

sub
�

l
��

.

After this claim is shown, the disjunction property can be applied to prove the theorem.

Let f , g, h be defined by

f
�

y
�

:= µx≤y
�

prfT (x , sub (k)) = 0
�

,

g
�

y
�

:= µx≤y
�

prfT (x , sub (l)) = 0
�

,

h
�

y
�

:= µx≤y
�

prfT (x , sub (k)) · prfT
�

x , neg (sub (l))
�

= 0
�

.

The five derivations, that are shown below, will combined establish the claim.
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Derivation 1:

P
�

y
�

prfT

�

f
�

y
�

, sub
�

k
��

6= 0
(2.7(iv))

f
�

y
�

= 0

�

z ≤ y
�

(2.7(v))
f (z)≤ f

�

y
�

f (z) = f
�

y
�

prfT

�

f
�

y
�

, sub
�

k
��

6= 0

prfT

�

f (z) , sub
�

k
��

6= 0
(2.7(ii))

prfT

�

z, sub
�

k
��

6= 0

z ≤ y → prfT

�

z, sub
�

k
��

6= 0

prfT

�

z, sub
�

k
��

= 0→ y < z

prfT

�

z, sub
�

k
��

= 0→ y ≤ z

∀z
�

prfT

�

z, sub
�

k
��

= 0→ y ≤ z
�

�

P
�

y
�

∨ prfT

�

y, neg
�

sub
�

k
���

= 0
�

∧∀z
�

prfT

�

z, sub
�

k
��

= 0→ y ≤ z
�

AP

�

sub
�

k
��

Derivation 2:

prfT

�

f
�

y
�

, sub
�

k
��

= 0

prfT

�

f
�

y
�

, sub
�

k
��

prfT

�

f
�

y
�

, neg
�

sub
�

l
���

= 0
(2.7(ii))

prfT

�

h
�

f
�

y
�

�

, sub
�

k
��

prfT

�

h
�

f
�

y
�

�

, neg
�

sub
�

l
���

= 0

prfT

�

h
�

f
�

y
�

�

, sub
�

k
��

= 0∨ prfT

�

h
�

f
�

y
�

�

, neg
�

sub
�

l
���

= 0

prfT

�

g
�

h
�

f
�

y
�

��

, sub
�

l
��

6= 0

g
�

h
�

f
�

y
�

��

= 0

...
(analog to derivation 1)

...

∀z
�

prfT

�

z, sub
�

l
��

= 0→ h
�

f
�

y
�

�

≤ z
�

�

prfT

�

h
�

f
�

y
�

�

, neg
�

sub
�

l
���

= 0∨ prfT

�

h
�

f
�

y
�

�

, sub
�

k
��

= 0
�

∧∀z
�

prfT

�

z, sub
�

l
��

= 0→ h
�

f
�

y
�

�

≤ z
�

AQ

�

sub
�

l
��

Derivation 3:

prfT

�

f
�

y
�

, sub
�

k
��

= 0

...
(same as in derivation 2)

...

lemma 2.7(iii)

z < g
�

h
�

f
�

y
�

��

→ prfT

�

z, sub
�

l
��

6= 0 g
�

h
�

f
�

y
�

��

= h
�

f
�

y
�

�

z < h
�

f
�

y
�

�

→ prfT

�

z, sub
�

l
��

6= 0

prfT

�

z, sub
�

l
��

= 0→ h
�

f
�

y
�

�

≤ z

∀z
�

prfT

�

z, sub
�

l
��

= 0→ h
�

f
�

y
�

�

≤ z
�

�

prfT

�

h
�

f
�

y
�

�

, neg
�

sub
�

l
���

= 0∨ prfT

�

h
�

f
�

y
�

�

, sub
�

k
��

= 0
�

∧∀z
�

prfT

�

z, sub
�

l
��

= 0→ h
�

f
�

y
�

�

≤ z
�

AQ

�

sub
�

l
��

Derivation 4:

�

AQ

�

sub
�

l
���(2)

prfT

�

g
�

h
�

f
�

y
�

��

, sub
�

l
��

= 0 [(∗)](1)

w ≤ g
�

h
�

f
�

y
�

��

g
�

h
�

f
�

y
�

��

< h
�

f
�

y
�

�

[(∗)](1)

(Derivation 5)

h
�

f
�

y
�

�

≤ w

g
�

h
�

f
�

y
�

��

< w

⊥
(∃-E)1

⊥
(→-I)2

¬AQ

�

sub
�

l
��

where (∗) denotes the formula
�

prfT

�

w, neg
�

sub
�

l
���

= 0∨ prfT

�

w, sub
�

k
��

= 0
�

∧∀x
�

prfT

�

x , sub
�

l
��

= 0→ w ≤ x
�

.
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Derivation 5:

prfT

�

w, neg
�

sub
�

l
���

= 0∨ prfT

�

w, sub
�

k
��

= 0

prfT

�

w, neg
�

sub
�

l
���

prfT

�

w, sub
�

k
��

= 0

lemma 2.7(iii)

x < h
�

f
�

y
�

�

→ prfT

�

x , sub
�

k
��

prfT

�

x , neg
�

sub
�

l
���

6= 0

prfT

�

x , sub
�

k
��

prfT

�

x , neg
�

sub
�

l
���

= 0→ h
�

f
�

y
�

�

≤ x

∀x
�

prfT

�

x , sub
�

k
��

prfT

�

x , neg
�

sub
�

l
���

= 0→ h
�

f
�

y
�

�

≤ x
�

prfT

�

w, sub
�

k
��

prfT

�

w, neg
�

sub
�

l
���

= 0→ h
�

f
�

y
�

�

≤ w

h
�

f
�

y
�

�

≤ w

Suppose T ` ∃yP
�

y
�

. Towards an application of the (∃-E)-rule let P
�

y
�

.
If prfT

�

f
�

y
�

, sub
�

k
��

6= 0 then by derivation 1 follows AP

�

sub
�

k
��

.

If prfT

�

f
�

y
�

, sub
�

k
��

= 0 and prfT

�

g
�

h
�

f
�

y
�

��

, sub
�

l
��

6= 0 then derivation 2 yields

AQ

�

sub
�

l
��

.

If prfT

�

f
�

y
�

, sub
�

k
��

= 0, prfT

�

g
�

h
�

f
�

y
�

��

, sub
�

l
��

= 0 and g
�

h
�

f
�

y
�

��

= h
�

f
�

y
�

�

then

derivation 3 implies AQ

�

sub
�

l
��

.

If prfT

�

f
�

y
�

, sub
�

k
��

= 0, prfT

�

g
�

h
�

f
�

y
�

��

, sub
�

l
��

= 0 and g
�

h
�

f
�

y
�

��

< h
�

f
�

y
�

�

then

by derivation 4 follows ¬AQ

�

sub
�

l
��

. Now using

T ` prfT

�

f
�

y
�

, sub
�

k
��

= 0∨ prfT

�

f
�

y
�

, sub
�

k
��

6= 0,

T ` prfT

�

g
�

h
�

f
�

y
�

��

, sub
�

l
��

= 0∨ prfT

�

g
�

h
�

f
�

y
�

��

, sub
�

l
��

6= 0,

T ` g
�

h
�

f
�

y
�

��

≤ h
�

f
�

y
�

�

�

by lemma2.7 (i)
�

,

T ` g
�

h
�

f
�

y
�

��

≤ h
�

f
�

y
�

�

↔ g
�

h
�

f
�

y
�

��

= h
�

f
�

y
�

�

∨ g
�

h
�

f
�

y
�

��

< h
�

f
�

y
�

�

three applications of the (∨-E)-rule yield AP

�

sub
�

k
��

∨ AQ

�

sub
�

l
��

∨¬AQ

�

sub
�

l
��

.
Claim 1 follows by the (∃-E)-rule.

Thus from T ` ∃yP
�

y
�

by the disjunction property follows that either T ` AP

�

sub
�

k
��

or

T ` AQ

�

sub
�

l
��

or T ` ¬AQ

�

sub
�

l
��

holds. In the following each of this three cases will be con-
sidered separately. So assume T ` ∃yP

�

y
�

.

First case: If T ` AP

�

sub
�

k
��

, then T ` P (n) for some n.

Assume T ` AP

�

sub
�

k
��

. From pAP

�

sub
�

k̄
��

q= sub (k) follows that there exists a number m, such

that prfT (m, sub (k)) = 0 and consequently T ` prfT

�

m, sub
�

k
��

= 0. Fix m.
We have,

�

prfT

�

y, neg
�

sub
�

k
���

= 0∨ P
�

y
�

�

∧∀z
�

prfT

�

z, sub
�

k
��

= 0→ y ≤ z
�

(∧-E), (∀-E)
prfT

�

m, sub
�

k
��

= 0→ y ≤ m
(→-E)

y ≤ m
(∧-I), (∃-I)

∃y
�

y ≤ m∧
�

prfT

�

y, neg
�

sub
�

k
���

= 0∨ P
�

y
�

�

∧∀z
�

prfT

�

z, sub
�

k
��

= 0→ y ≤ z
��

Hence by the (∃-E)-rule applied to AP

�

sub
�

k
��

holds

T ` ∃y
�

y ≤ m∧
�

prfT

�

y, neg
�

sub
�

k
���

= 0∨ P
�

y
�

�

∧∀z
�

prfT

�

z, sub
�

k
��

= 0→ y ≤ z
��

.

It follows,
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T ` ∃y
�

y ≤ m∧
�

prfT

�

y, neg
�

sub
�

k
���

= 0∨ P
�

y
�

��

T ` ∃y
��

y ≤ m∧ prfT

�

y, neg
�

sub
�

k
���

= 0
�

∨
�

y ≤ m∧ P
�

y
��

�

T ` ∃y
�

y ≤ m∧ prfT

�

y, neg
�

sub
�

k
���

= 0
�

∨ ∃y
�

y ≤ m∧ P
�

y
��

Thus either T ` ∃y
�

y ≤ m∧ P
�

y
��

or T ` ∃y
�

y ≤ m∧ prfT

�

y, neg
�

sub
�

k
���

= 0
�

holds, since T
obeys the disjunction property.
First subcase: Suppose T ` ∃y

�

y ≤ m∧ P
�

y
��

.
By lemma 3.2 it holds T ` y ≤ m∧ P

�

y
�

→
∨

i≤m P
�

i
�

. So, applying the (∃-E)-rule to the assumption

one gets T `
∨

i≤m P
�

i
�

, and consequently, T ` P
�

i
�

for some i ≤ m, since T has the disjunction
property.
Second subcase: Suppose T ` ∃y

�

y ≤ m∧ prfT

�

y, neg
�

sub
�

k
���

= 0
�

.
By lemma 3.2 we have

T ` y ≤ m∧ prfT

�

y, neg
�

sub
�

k
���

= 0→
∨

i≤m

prfT

�

i, neg
�

sub
�

k
���

= 0.

Hence, by the (∃-E)-rule applied to the assumption it follows

T `
∨

i≤m

prfT

�

i, neg
�

sub
�

k
���

= 0,

and consequently by the disjunction property for some i ≤ m holds

T ` prfT

�

i, neg
�

sub
�

k
���

= 0.

But then T ` ¬AP

�

sub
�

k
��

, because p¬AP

�

sub
�

k
��

q = neg
�

pAP

�

sub
�

k
��

q
�

= neg (sub (k)). So T
is inconsistent.
Hence in both subcases, T ` P (n) holds for some number n.

Second case: If T ` AQ

�

sub
�

l
��

, then T ` P (n) for some n.

The same argumentation as in the first case, except that Q is substituted for P and l for k, yields
T `Q (n) for some number n; that is, T ` prfT

�

n, sub
�

k
��

= 0. Since pAP

�

sub
�

k
��

q= sub (k) it holds

T ` AP

�

sub
�

k
��

. Hence the assumption follows by the first case.

Third case: If T ` ¬AQ

�

sub
�

l
��

, then T is inconsistent.

Assume T ` ¬AQ

�

sub
�

l
��

. Then prfT
�

m, neg (sub (l))
�

= 0 for some m, because
p¬AQ

�

sub
�

l
��

q= neg
�

pAQ

�

sub
�

l
��

q
�

= neg (sub (l)). Fix m.

Suppose prfT (i, sub (l)) = 0 for some i < m. Then T ` AQ

�

sub
�

l
��

, because sub (l) = pAQ

�

sub
�

l
��

q.
Hence T is inconsistent in this case.
Otherwise, suppose prfT (i, sub (l)) 6= 0 for every i < m. Then T `

∧

i<m prfT

�

i, sub
�

l
��

6= 0. By

lemma 3.2 we have T `
∧

i<m prfT

�

i, sub
�

l
��

6= 0 →
�

x < m→ prfT

�

x , sub
�

l
��

6= 0
�

. Hence it fol-

lows that T ` x < m → prfT

�

x , sub
�

l
��

6= 0 holds. By contraposition and the (∀-I)-rule this implies

T ` ∀x
�

prfT

�

x , sub
�

l
��

= 0→ m≤ x
�

.

Furthermore it holds T ` prfT

�

m, neg
�

sub
�

l
���

= 0 as observed above. Hence

T `
�

prfT

�

m, neg
�

sub
�

l
���

= 0∨Q (m)
�

∧∀x
�

prfT

�

x , sub
�

l
��

= 0→ m≤ x
�

.

18



And therefore by the (∃-I)-rule it follows T ` AQ

�

sub
�

l
��

. Thus T is inconsistent.

So it was shown that T ` ∃yP
�

y
�

→ AP

�

sub
�

k
��

∨ AQ

�

sub
�

l
��

∨ ¬AQ

�

sub
�

l
��

holds, and that,
after the application of the disjunction property to this formula, in each of the three cases T ` P (n) holds
for some number n. Thus, if T obeys the disjunction property, then it also obeys the numerical existence
property.
The converse follows by means of lemma 2.3.

Remark 3.4. Notice that in the proof of theorem 3.3 instead of the formula AP (x) one could also use
the shorter formula

∃y
�

P
�

y
�

∧∀z
�

prfT (z, x) = 0→ y ≤ z
��

That is, one disjunction in the former definition of AP (x) can be dropped. In fact, the purpose of
the dropped part was to enable that T ` ¬AP

�

sub
�

k
��

would imply T ` AP

�

sub
�

k
��

. But such an

implication is only needed for the formula AQ

�

sub
�

l
��

for the third case in the proof. That is also
the reason why the formula AQ (x) cannot be used in the proof in such a simplified form. Hence such
a simplification of AP (x) would actually make the proof longer, because of the loss of the previous
resemblance between AP (x) and AQ (x).
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4 Corollaries

After theorem 3.3 is established, certain questions which are related to the theorem or its proof arise.
Hence the aim of this section is to present some corollaries of theorem 3.3 and its proof.
For instance it turns out that to establish the numerical existence property not for all formulae with a
single free variable, but only for a smaller class, the disjunction property is also not required to hold for all
disjunctions of sentences, but only for a smaller class. A detailed treatment of this matter for an arbitrary
recursively enumerable extension of arithmetic T is given below in subsection 4.2. Interestingly, the
general requirements sometimes can be weakened as shown by an analysis of HA in the same subsection.
But first let us consider whether an algorithm for the witness number can be deduced from the proof of
theorem 3.3.

4.1 On the witness number

A question which arises naturally is, whether the proof of theorem 3.3 gives a bound for the witness
number, or maybe even an algorithm to compute the bound or the number. Several corollaries of the
proof of theorem 3.3 address this question in the following.
Throughout this subsection let T, P(y), AP

�

sub
�

k
��

be defined as in the proof of theorem 3.3.

Corollary 4.1 (On the upper bound for the witness number). If T is consistent, then

T ` prfT

�

m,pAP

�

sub
�

k
��

q
�

= 0 for some m and T ` P (n) for some n≤ m.

Proof. Consider the case distinction from the proof of theorem 3.3.
(Third case) If ¬AQ

�

sub
�

l
��

is provable, then T is inconsistent.

(Second case) If AQ

�

sub
�

l
��

is provable and mQ is a number fulfilling

T ` prfT

�

mQ,pAQ

�

sub
�

l
��

q
�

= 0,

then AP

�

sub
�

k
��

is provable and there is a number mP ≤ mQ fulfilling

T ` prfT

�

mP ,pAP

�

sub
�

k
��

q
�

= 0.

(First case) If AP

�

sub
�

k
��

is provable and mP is a number fulfilling

T ` prfT

�

mP ,pAP

�

sub
�

k
��

q
�

= 0,

then there is a number n≤ mP , such that T ` P (n) holds.

Corollary 4.2 (An algorithm for the witness number). Assume that an algorithm, that transforms the code
of a proof of a closed disjunction A∨ B into the code of a proof of either A or B, is known. Then one can
derive from the proof of theorem 3.3 an algorithm, which out of the code of a proof of ∃yP(y) computes a
number n such that T ` P(n).

Proof. This easily becomes clear by going through the proof of theorem 3.3.
The proof consists of several case distinctions. Whenever a case of a case distinction does not imply
inconsistency of T, it actually gives a suitable n. In fact, such a number n is found utilizing besides the
rules and axioms of T only the disjunction property and the sentence ∃yP(y), which is assumed to be
already proven. Clearly, if a syntactical proof of a statement in T is given, then this proof can be encoded
by some algorithm. Thus using the disjunction-property-algorithm from the assumption, one can build
an algorithm which computes a witness number n out of the code of a proof of ∃yP(y). Otherwise,
whenever a case of a case distinction implies inconsistency of T, we may set the witness number n to 0.
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Corollary 4.3 (An algorithm for the upper bound of the witness number). Assume there is an algorithm
that produces out of the code of a proof of a closed disjunction A∨ B an upper bound for the code of a proof
of either A or B. Then one can derive from the proof of theorem 3.3 an algorithm, which out of the code of a
proof of ∃yP(y) computes an upper bound for the number n such that T ` P(n).

Proof. This is clear because of corollary 4.1, and can be proven analogously to corollary 4.2.

4.2 Establishing the numerical existence property for fragments of a recursively enumerable
extension of arithmetic

Since the numerical existence property is implied by the disjunction property, it is interesting to invest-
igate at which steps of the proof of theorem 3.3 the disjunction property was applied, and which further
conclusions can be drawn from this.
In particular, it may be useful to know for which disjunctions of sentences the disjunction property of T
is required to hold, to establish the numerical existence property for some given formula P(y), or for a
particular class of formulae (where as before T denotes a recursively enumerable extension of arithmetic,
and P(y) a formula with no free variable other than y). That is, whether T has to have the disjunction
property for all disjunctions of sentences, or whether it is sufficient to have it only for some smaller class
of sentences, and if so, then for which class. Of course this depends on the formula P(y) or the class of
formulae for which one wants to establish the numerical existence property.
Also, there are different ways to divide formulae into classes. Two different classifications are analyzed
here.

4.2.1 Establishing the numerical existence property for prenex formulae with a limited number
of quantifiers

Throughout this subsection let T, P(y), AP

�

sub
�

k
��

, AQ

�

sub
�

l
��

be defined as in the proof of theorem
3.3.
A well-known classification of formulae distinguishes formulae depending on the number of blocks of
equal quantifiers.

Definition 4.4 (The formula-classes Σ0
n,Π0

n). Let T be an extension of arithmetic. A formula A in the

language of T is called Σ0
n-formula, if it is of the form ∃x1∀x2 . . .∃/∀xnA0

�

x1, x2, . . . , xn

�

, where x i is a

tuple of variables for each i ∈ {1, . . . , n}, and A0

�

x1, x2, . . . , xn

�

is a quantifier-free formula.

Likewise, if A has the form ∀x1∃x2 . . .∃/∀xnA0

�

x1, x2, . . . , xn

�

, then A is called Π0
n-formula.

The proof of theorem 3.3 establishes the numerical existence property for the formula P(y). Now
let us examine, for which class of formulae the disjunction property is required in the proof, if P(y) is
equivalent to a Σ0

n- or a Π0
n-formula.

Corollary 4.5 (Requirements to establish NEP for Σ0
n- or Π0

n-formulae). If T has the disjunction property
for disjunctions of Σ0

2-sentences, or alternatively for disjunctions of Π0
2-sentences, then it has the numerical

existence property for Σ0
1-formulae.

If n ≥ 2 and T obeys the disjunction property for disjunctions of Σ0
n-sentences, then T has the numerical

existence property for Σ0
n-formulae, as well as for Π0

n−1-formulae.

Proof. Assume that P(y) is equivalent to a Σ0
n-formula or to a Π0

n-formula. Then all sentences, which are
parts of disjunctions on which the disjunction property is applied in the proof, are equivalent to some
Σ0

m- or some Π0
m-formulae.

Let P(y) be equivalent to a Σ0
n-formula or to a Π0

n−1-formula for some n ≥ 2 (we have to consider the
case that n ≤ 1 separately). Then out of all sentences, which are parts of disjunctions on which the
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disjunction property is applied in the proof, AP

�

sub
�

k
��

(which depends on P(y)) is the sentence with
the (strictly) greatest number of quantifiers. Thus it is sufficient for T to have the disjunction property
for a class of sentences, that includes sentences with as many or fewer blocks of equal quantifiers as in
AP

�

sub
�

k
��

.

The formula AP(sub
�

k
�

) denotes

∃y
��

prfT

�

y, neg
�

sub
�

k
���

= 0∨ P
�

y
�

�

∧∀z
�

prfT

�

z, sub
�

k
��

= 0→ y ≤ z
��

.

We can get rid of the universal quantifier in AP(sub
�

k
�

) by the use of bounded minimalization.

Let g(y) := µz≤y

�

prfT

�

z, sub
�

k
��

= 0
�

. Then it holds

T ` ∀z
�

prfT

�

z, sub
�

k
��

= 0→ y ≤ z
�

↔ prfT

�

g
�

y
�

, sub
�

k
��

6= 0∨ g
�

y
�

= y. (4.1)

It clearly holds T ` ∀z
�

prfT

�

z, sub
�

k
��

= 0→ y ≤ z
�

↔ ∀z
�

z < y → prfT

�

z, sub
�

k
��

6= 0
�

, and
therefore the following two derivations yield (4.1).

lemma 2.7 (i)

g
�

y
�

≤ y

g
�

y
�

< y ∨ g
�

y
�

= y

∀z
�

z < y → prfT

�

z, sub
�

k
��

6= 0
�

g
�

y
�

< y → prfT

�

g
�

y
�

, sub
�

k
��

6= 0
�

g
�

y
�

< y
�

prfT

�

g
�

y
�

, sub
�

k
��

6= 0

prfT

�

g
�

y
�

, sub
�

k
��

6= 0∨ g
�

y
�

= y

�

g
�

y
�

= y
�

prfT

�

g
�

y
�

, sub
�

k
��

6= 0∨ g
�

y
�

= y
(∨-E)

prfT

�

g
�

y
�

, sub
�

k
��

6= 0∨ g
�

y
�

= y

�

g
�

y
�

= y
�(2)

(lemma 2.7 (iii))
z < y → prfT

�

z, sub
�

k
��

6= 0

∀z
�

z < y → prfT

�

z, sub
�

k
��

6= 0
�

�

prfT

�

g
�

y
�

, sub
�

k
��

6= 0
�(2)

(lemma 2.7 (iv))
g
�

y
�

= 0

�

z < y
�(1)

(lemma 2.7 (v))
g (z)≤ g

�

y
�

g (z) = g
�

y
�

prfT

�

g (z) , sub
�

k
��

6= 0
(lemma 2.7 (ii))

prfT

�

z, sub
�

k
��

6= 0
(→-I)(1)

z < y → prfT

�

z, sub
�

k
��

6= 0

∀z
�

z < y → prfT

�

z, sub
�

k
��

6= 0
�

(∨-E)(2), (→-I)�

prfT

�

g
�

y
�

, sub
�

k
��

6= 0∨ g
�

y
�

= y
�

→∀z
�

z < y → prfT

�

z, sub
�

k
��

6= 0
�

Thus we have,

T ` AP

�

sub
�

k
��

↔∃y
��

prfT

�

y, neg
�

sub
�

k
���

= 0∨ P
�

y
�

�

∧
�

prfT

�

g
�

y
�

, sub
�

k
��

6= 0∨ g
�

y
�

= y
��

.

Thus we get the following.

• If P(y) is equivalent to a Σ0
n-formula with n≥ 2, then AP

�

sub
�

k
��

is equivalent to a Σ0
n-sentence.

• If P(y) is equivalent to a Π0
n−1-formula with n ≥ 2, then AP

�

sub
�

k
��

is equivalent to a Σ0
n-

sentence.

This implies the assertion for formulae P(y), which are equivalent to a Σ0
n- or Π0

n−1-formulae with n≥ 2.
Nevertheless we still have to consider the case that P(y) is equivalent to a Σ0

n-formula for some n ≤ 1.
In this case, AP

�

sub
�

k
��

does not have a number of quantifiers strictly greater than that of any other
sentence, which is a part of some disjunction on which the disjunction property is applied in the proof. In
this case the proof applies the disjunction property on quantifier-free sentences, Σ0

1-sentences, and a Π0
1-

sentence. In particular, the disjunction property is applied on the sentence AP

�

sub
�

k
��

∨AQ

�

sub
�

l
��

∨
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¬AQ

�

sub
�

l
��

. Since AQ

�

sub
�

l
��

is equivalent to a Σ0
1-sentences (which can be seen by the previous

argumentation), the sentence ¬AQ

�

sub
�

l
��

is equivalent to a Π0
1-sentence. Thus T must have the

disjunction property for a class of sentences, that contains disjunctions of Σ0
1- and Π0

1-sentences. That is,
it is sufficient for T to have the disjunction property for disjunctions of Σ0

2-sentences, or alternatively for
disjunctions of Π0

2-sentences.

The following remarks discuss the optimality of the result acquired in corollary 4.5 for Σ0
n-formulae

with n ∈ {0,1, 2}.

Remark 4.6 (Σ0
0-DP 6⇒ Σ0

0-NEP). Opposed to what corollary 4.5 states, assume that any recursively enu-
merable extension of arithmetic T, which fulfills the disjunction property for disjunctions of quantifier-
free sentences, also obeys the numerical existence property for quantifier-free formulae. Let PA∗ denote
PA with the sentence ∃x

�

prfPA

�

x ,p⊥q
�

= 0
�

as an additional axiom, where prfPA
�

x , y
�

denotes the

provability function of PA, which “does not know” that ∃x
�

prfPA

�

x ,p⊥q
�

= 0
�

is an axiom.
On the one hand, if PA∗ is consistent, then it obeys the disjunction property for disjunctions of quantifier-
free sentences, because PA is Σ0

1-complete (see 7.4.20 in [Dal04]) and obeys the law of excluded middle.
Now, by assumption it follows that PA∗ fulfills the numerical existence property for quantifier-free for-
mulae. Therefore and because of PA∗ ` ∃x

�

prfPA

�

x ,p⊥q
�

= 0
�

, we have PA∗ ` prfPA

�

n,p⊥q
�

= 0 for

some number n. But then PA ` prfPA

�

n,p⊥q
�

= 0, because PA∗ is assumed to be consistent and PA
has the disjunction property for quantifier-free sentences as well as the law-of-excluded-middle schema.
Consequently it holds prfPA (n,p⊥q) = 0, and therefore PA ` ⊥, that is, PA is inconsistent.
On the other hand, if PA∗ is inconsistent, then PA∗ ` 0 6= 0. Consequently it holds PA `
∃x
�

prfPA

�

x ,p⊥q
�

= 0
�

→ 0 6= 0. Now by the contrapositive of this statement and by PA ` 0 = 0 it

follows PA ` ¬∃x
�

prfPA

�

x ,p⊥q
�

= 0
�

. But then PA is inconsistent by Gödels second incompleteness
theorem.
Thus the disjunction property for disjunctions of quantifier-free sentences in general does not imply the
numerical existence property for quantifier-free formulae.

Remark 4.7 (Optimality of the result of corollary 4.5 for Σ0
2-formulae). Opposed to what corollary 4.5

states, assume that any recursively enumerable extension of arithmetic T, which fulfills the disjunction
property for disjunctions of Σ0

1-sentences, obeys the numerical existence property for Σ0
2-formulae.

PA has the disjunction property for disjunctions of Σ0
1-sentences, because PA is Σ0

1-complete (see 7.4.20
in [Dal04]). Thus by assumption PA has the numerical existence property for Σ0

2-formulae. Let A(x)
denote the Σ0

2-formula

∀y
�

prfT

�

x ,p⊥q
�

= 0∨ prfT

�

y,p⊥q
�

6= 0
�

.

Then by the law-of-excluded-middle schema it holds PA ` ∃xA(x), because

PA ` ∃xA(x)↔∃x
�

prfT

�

x ,p⊥q
�

= 0
�

∨∀y
�

prfT

�

y,p⊥q
�

6= 0
�

,

that is,

PA ` ∃xA(x)↔∃x
�

prfT

�

x ,p⊥q
�

= 0
�

∨¬∃y
�

prfT

�

y,p⊥q
�

= 0
�

.

Since PA ` ∃xA(x) holds, it follows by the numerical existence property for Σ0
2-sentences that there is a

number n such that PA ` A(n). That is,

PA ` prfT

�

n,p⊥q
�

= 0∨∀y
�

prfT

�

y,p⊥q
�

6= 0
�

. (4.2)

Assuming the consistency of PA we have PA ` prfT

�

n,p⊥q
�

6= 0 for all n ∈ N0. With (4.2) This implies

PA ` ∀y
�

prfT

�

y,p⊥q
�

6= 0
�

.

But this is a contradiction to Gödel’s second incompleteness theorem.
Hence the requirement concerning the numerical existence property for Σ0

2-formulae, which is given in
corollary 4.5, is indeed optimal.
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4.2.2 Heyting arithmetic as an interesting special case

This subsection gives an analysis of the relation between the disjunction and the numerical existence
properties of HA. Interestingly HA behaves rather differently than the general case, insofar as assum-
ing its own disjunction property for disjunctions of Σ0

2-sentences it proves its own numerical existence
property (for all formulae with a single free variable).

Corollary 4.8 (Due to [Lei85]). HA proves the following: “If HA fulfills the disjunction property for dis-
junctions of Σ0

2-sentences, then HA fulfills the numerical existence property”.

Proof. A proof is given later in this section.

In [Lei85] Leivant outlines among Friedman’s previously published theorems also some of Friedman’s
unpublished results. Essential for the proof of corollary 4.8, which is given in section 4 in [Lei85], is the
concept of q-realizability, and the soundness theorem for q-realizability. Hence these are introduced first
in the following. Then a proof of corollary 4.8 is given.

In order to treat q-realizability, elementary recursion theory must be formalized in HA. I will not give
such a formalization in detail here. The next lemma presents without a proof some important results of
such a formalization, which are needed in the current discussion. A suitable formalization of elementary
recursion theory in HA is worked out in detail in section 7 of chapter 3 in [Tro88].

Lemma 4.9 (Kleene’s T-predicate and the result extracting function). There exists a primitive recursive
predicate T

�

e, x , n
�

in the language of HA, which expresses that n codes a terminating computation sequence
of the partial recursive function with code e and input x (x denotes a tuple). Also, there is a primitive
recursive function U(n), which extracts the result of the computation sequence with code n. Usually, T is
called Kleene’s T-predicate and U the result extracting function. Furthermore, it holds that

HA ` T
�

x , y , w
�

∧ T
�

x , y , z
�

→ w = z.

Proof. See section 7 of chapter 3 in [Tro88].

In the following only the function symbol of U will be needed (and not the function N0→ N0 as such).
So it will not lead to misunderstandings if the function symbol of U is denoted by U as well.
Furthermore, in the following j denotes a pairing function N0 ×N0 onto N0, and j1, j2 denote functions
N0 onto N0, such that

j1
�

j(x , y)
�

= x , j2
�

j(x , y)
�

= y, j
�

j1(z), j2(z)
�

= z.

We can assume that the functions j, j1 and j2 are primitive recursive. For instance one can take

j(x , y) :=
1

2

�

x + y
��

x + y + 1
�

+ x ,

j1(z) := µx≤z

 

∏

y≤z

�

j(x , y)− z
�

= 0

!

,

j2(z) := µy≤z
�

j
�

j1(z), y
�

− z = 0
�

,

which are primitive recursive functions.

Definition 4.10 (q-realizability predicate). Let A
�

x0, . . . , xn
�

be a formula containing at most x0, . . . , xn
free (n ∈ N0). By induction on the logical complexity of A the following defines the formula
xqA

�

x0, . . . , xn
�

, where x /∈
�

x0, . . . , xn
	

.
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(i) xqA :≡ A for A prime,

(ii) xq (A∧ B) :≡
�

j1(x)qA
�

∧
�

j2(x)qB
�

,

(iii) xq (A∨ B) :≡
�

j1(x) = 0→
�

j2(x)qA
�

∧ A
�

∧
�

j1(x) 6= 0→
�

j2(x)qB
�

∧ B
�

,

(iv) xq (A→ B) :≡ ∀u
��

uqA
�

∧ A→∃v
�

T (x , u, v )∧U (v )qB
��

,

(v) xq
�

∃yB
�

y
��

:≡
�

j2(x)qB
�

j1(x)
��

∧ B
�

j1(x)
�

,

(vi) xq
�

∀yB(y)
�

:≡ ∀y∃z
�

T
�

x , y, z
�

∧U(z)qB(y)
�

.

xqA is called q-realizability predicate of A.

Theorem 4.11 (Soundness). Let A be a sentence.

(i) If HA ` A then there exists a number n such that HA ` nqA.

(ii) Under the assumption that HA obeys the numerical existence property for Σ0
1-formulae, the statement

(i) can be proven in HA.

Proof. In the following Σ0
1-NEP is used as an abbreviation for the numerical existence property for Σ0

1-
formulae.
A proof of (i) is given in 3.2.4, [Tro73]. At first glance it is not clear whether that proof fulfills the con-
dition given in (ii), because it rather informally uses Kleene bracket notation {·}(·) and Lambda terms
λx .t (for which there are in general no function symbols in the language of HA). Nevertheless it can be
formalized in HA+Σ0

1-NEP, as required in (ii), but then the proof would become quite lengthy. Therefore
the following outlines the general strategy of the proof, and then gives only a small part in detail, in
order to indicate why Σ0

1-NEP is required.
After selecting an axiom system of HA, the proof proceeds by induction on the length of deductions.
Since the statement (i) is only required to hold for sentences, it should be first considered, how de-
ductions of sentences look like, that is, how deductions of open formulae can be excluded from the
induction. In a few minutes of reflection it becomes clear that it is enough to consider universal closures
of axiom schemata and of formulae to which a rule is applied. That is, for each instance F of an axiom,
the existence of a number n must be proven such that HA ` nqF ∗, where F ∗ denotes the universal closure
of F . Likewise, for each application of a rule with assumptions F0, . . . , Fm and conclusion F it has to be
shown that if HA ` F ∗i and HA ` niqF ∗i for some number ni for each i ∈ {0, . . . , m}, then there exists a
number n such that HA ` nqF ∗ (where F ∗, F ∗0 , . . . , F ∗m denote universal closures of F, F0, . . . , Fm respect-
ively). Besides, it is clear that the outlined induction step already includes the induction beginning.
As already mentioned this induction proof is given in 3.2.4, [Tro73], and it only has to be formalized in
HA+Σ0

1-NEP. To illustrate how this can be done and in particular how Σ0
1-NEP is applied, the treatment

of the modus ponens rule is given in the following. For simplicity only its application to closed formulae
is covered.
Let A and B be sentences. Let HA ` A, HA ` A→ B, and let n and m be numbers such that HA ` nqA and
HA ` mq (A→ B). By definition of q-realizability it follows

HA ` ∀u
��

uqA
�

∧ A→∃v
�

T (m, u, v )∧U (v )qB
��

.

Since HA ` nqA∧ A it follows

HA ` ∃v
�

T (m, n, v )∧U (v )qB
�

. (4.3)

It follows
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HA ` ∃v T (m, n, v )
HA ` ∃v (T (m, n, v )∧ ∃z (U (v ) = z))
HA ` ∃z∃v (T (m, n, v )∧U (v ) = z)

The predicate T
�

x , y, z
�

can be constructed as a quantifier-free formula, as it is for instance worked out
in detail in chapter 8 in [Sho93]. Hence by Σ0

1-NEP the above implies that there exists a number k such
that

HA ` ∃v
�

T (m, n, v )∧U (v ) = k
�

.

With statement (4.3) it follows

∃v
�

T (m, n, v )∧U (v )qB
�

∃w
�

T (m, n, w)∧U (w) = k
�

∃v∃w
�

T (m, n, v )∧ T (m, n, w)∧U (w) = k ∧U (v )qB
�

(lemma 4.9)
∃v∃w

�

v = w ∧U (w) = k ∧U (v )qB
�

∃w
�

U (w) = k ∧U (w)qB
�

kqB

Hence HA ` kqB holds for some number k.

Now the prerequisites for the proof of corollary 4.8 are established. So the proof can be finally presen-
ted.

Proof of corollary 4.8. This proof is due to Leivant (4.2.3 in [Lei85]). I informally talk about provability
in HA in the following.
LetΣ0

2-DP abbreviate the disjunction property for disjunctions ofΣ0
2-sentences, and letΣ0

1-NEP abbreviate
the numerical existence property for Σ0

1-formulae.
Let P(y) be a formula with no free variable other than y . Assume HA ` ∃yP(y).
Suppose that HA obeys Σ0

2-DP. Then HA fulfills Σ0
1-NEP (see corollary 4.5).1 Hence the given proof of

theorem 4.11 (i) can be carried out. Consequently one can prove in HA+Σ0
2-DP that HA ` nq

�

∃yP(y)
�

for some number n. By definition of q-realizability this is equivalent to

HA `
�

j2 (n)qP
�

j1 (n)
��

∧ P
�

j1 (n)
�

.

Further, there is a number k such that j1 (n) = k. Since j1 is a primitive recursive function, it follows
HA ` j1 (n) = k. Thus HA ` P

�

k
�

.
Hence the numerical existence property is established.

4.2.3 Considerations based on a classification of formulae which is more appropriate for
intuitionistic logic

In the subsection 4.2.1 prenex formulae were classified into Σ0
n- and Π0

m-formulae (m, n ∈ N0), and
the criteria to establish the numerical existence property for these classes of formulae were discussed.
Although the necessary criteria were shown, the whole discussion may still seem nonsatisfying. While
extensions of (intuitionistic) arithmetic are treated in this thesis, the discussed classification is not as
appropriate for intuitionistic logic as it is for classical logic. It is well-known that a formula of an
extension of arithmetic (for instance HA) is in general not (intuitionistically) equivalent to a formula
in prenex normal form, that is a Σ0

n- or a Π0
m-formula. So the discussed classification is only appropriate

for extensions of arithmetic containing the classical logic (for instance PA). Furthermore, in [Weh96] it
is shown that HA0 plus induction schema for prenex formulae is Π0

2-conservative over Π0
2-induction. On

1 In [Lei85] it is claimed that Σ0
1-DP is already sufficient to establish Σ0

1-NEP. Nevertheless it is not clear how to prove this.
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the other hand, PA is Π0
2-conservative over HA. This further demonstrates why the classification into Σ0

n-
and Π0

m-formulae cannot be optimal in the context of intuitionistic logic.
The following presents a classification which is more appropriate for intuitionistic logic. After that,
analogously as it is done in the subsection 4.2.1, the requirements to establish the numerical existence
property for the defined classes of formulae are discussed.
The classification presented below is due to [Bur00]. In a sense it is an analogy of the Π0

n-classification,
adapted for HA. Similar to Σ0

n or Π0
n, it is again a hierarchy which is based on the complexity of formulae,

though this time the complexity is not measured just by the number of quantifiers.

Definition 4.12 (The formula-classes Φn).

(i) Φ0 := Σ0
0 = Π

0
0.

(ii) Φ1 := Σ0
1.

(iii) Φ2 := Π0
2.

(iv) For n≥ 3 the class Φn is inductively defined by the following.

(1) Φn−1 ⊆ Φn.

(2) If A∈ Φn−1 and B ∈ Φn, then A→ B ∈ Φn.

(3) If A∈ Φn, then ∀xA(x) ∈ Φn.

(4) If A, B ∈ Φn, then A∨ B, A∧ B ∈ Φn.

(5) If A∈ Φn−2, then ∃xA(x) ∈ Φn.

The Φn-classification of formulae is in a sense an analogy of the Π0
n-classification, because for n ≥ 2

the Φn-fragment of a theory is classically equivalent to its Π0
n-fragment.

Additionally, the Φn-classification seems indeed to be quite convenient for dealing with HA. In contrast
to the Σ0

n- and Π0
n-classification, each formula of HA is equivalent to some Φn-formula.

These results, which are due to [Bur00], are given in the following lemmata.

Lemma 4.13. Every formula in the language of HA is (intuitionistically) equivalent to a Φn-formula for a
suitable n ∈ N0.

Proof. The assertion follows by an easy induction on formulae.

Lemma 4.14. Let n≥ 2.

(i) Every Φn-formula is classically equivalent to a Π0
n-formula.

(ii) Every Π0
n-formula is classically equivalent to a Φn-formula.

Proof. (i) We apply induction on n.
If n= 2, then Φn = Π0

n by definition.
Let n= 3. One only needs to check the defining statements of Φ3.

(1) Obviously Φ2 ⊆ Π0
3.

(2) Let A∈ Φ2 and B ∈ Φ3, such that B is classically equivalent to a Π0
3-formula, then

(A→ B)↔
�

∀x∃yA0

�

x , y
�

→∀x ′∃y ′∀z′B0

�

x ′, y ′, z′
��

↔∀x ′∃x , y ′∀y , z′
�

A0

�

x , y
�

→ B0

�

x ′, y ′, z′
��

,

where A0 and B0 are suitable quantifier-free formulae and x , y , x ′, y ′, z′ are tuples. Thus
A→ B is classically equivalent to a Π0

3-formula.
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(3) If B ∈ Φ3 is classically equivalent to a Π0
3-formula, then so is ∀xB(x).

(4) If A, B ∈ Φ3 are classically equivalent to Π0
3-formulae, then so are A∨ B, A∧ B.

(5) If A∈ Φ1 = Σ0
1, then ∃xA(x) ∈ Φ1 ⊆ Φ2 ⊆ Φ3.

Let n ≥ 4. Again one needs to check the defining statements of Φn. The treatment of (1)-(4) is
similar to the case of n = 3. Only (5) is different. If A ∈ Φn−2, then by induction hypothesis A
is classically equivalent to a Π0

n−2-formula. Therefore ∃xA(x) is classically equivalent to a Σ0
n−1-

formula, and consequently also equivalent to a Π0
n-formula.

(ii) The following is shown by induction on k ≥ 1.

• Every Π0
2k-formula is classically equivalent to a Φ2k-formula.

• Every Π0
2k+1-formula is classically equivalent to a Φ2k+1-formula.

Let k = 1. Then Π0
2k = Π

0
2 = Φ2k by definition. Now let A∈ Π0

2k+1 = Π
0
3. Then by classical logic we

have,

A↔∀x∃y∀zA0

�

x , y , z
�

↔∀x¬∀y∃z¬A0

�

x , y , z
�

︸ ︷︷ ︸

Φ2
︸ ︷︷ ︸

Φ3

,

where A0 denotes a suitable quantifier-free formula and x , y , z are tuples. Hence for k = 1 every
Π0

2k+1-formula is equivalent to a Φ2k+1-formula.
For the induction step let k ≥ 2. By the induction hypothesis every B ∈ Π0

2k is equivalent to a
Φ2k-formula, and by classical logic we have,

∀x∃yB
�

x , y
�

︸ ︷︷ ︸

Π0
2(k+1)

↔∀x¬∀y¬B
�

x , y
�

︸ ︷︷ ︸

Φ2k
︸ ︷︷ ︸

Φ2k+1
︸ ︷︷ ︸

Φ2(k+1)

.

Likewise, by the induction hypothesis every C ∈ Π0
2k+1 is equivalent to a Φ2k+1-formula, so it

follows

∀x∃yC
�

x , y
�

︸ ︷︷ ︸

Π0
2(k+1)+1

↔∀x¬∀y¬C
�

x , y
�

︸ ︷︷ ︸

Φ2k+1
︸ ︷︷ ︸

Φ2(k+1)
︸ ︷︷ ︸

Φ2(k+1)+1

.

Now assume that we want to prove the numerical existence property for Φn-formulae. The following
corollary (of the proof of theorem 3.3) gives sufficient conditions for the disjunction property.

Corollary 4.15 (Requirement to establish NEP for Φn-formulae). Let T be a recursively enumerable exten-
sion of arithmetic, and let n ∈ N0.

(i) If n < 2 and T has the disjunction property for disjunctions of Φ2-sentences, then T has the numerical
existence property for Φn-formulae.

(ii) If n≥ 2 and T has the disjunction property for disjunctions of Φn+2-sentences, then it has the numerical
existence property for Φn-formulae.
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Proof. We proceed analogously as in the proof of corollary 4.5.
Let P(y) be a formula with no free variable other than y . Let n ≥ 2 and assume that P(y) is equivalent
to a Φn-formula. Again, the most complex (that is, in Φm with the strictly largest m) formula on which
the disjunction property is applied in the proof of theorem 3.3 is AP

�

sub
�

k
��

. As already seen in the
proof of corollary 4.5 we have,

T ` AP

�

sub
�

k
��

↔∃y
�

�

prfT

�

y, neg
�

sub
�

k
���

= 0∨ P
�

y
�

�

︸ ︷︷ ︸

Φn

∧
�

prfT

�

g
�

y
�

, sub
�

k
��

6= 0∨ g
�

y
�

= y
�

︸ ︷︷ ︸

Φ0
︸ ︷︷ ︸

Φn

�

,

where g(y) := µz≤y

�

prfT

�

z, sub
�

k
��

= 0
�

.

Thus by definition of Φn it follows that AP

�

sub
�

k
��

is equivalent to a Φn+2-formula.

On the other hand, if n ≤ 1 and P(y) is equivalent to a Φn-formula, then AP

�

sub
�

k
��

, which is equi-
valent to a Φ1-formula in this case, is not the most complex formula on which the disjunction property is
applied in the proof of theorem 3.3. Since ¬AQ

�

sub
�

l
��

is equivalent to a Φ2-formula, the disjunction
property for disjunctions of Φ2-sentences is required.
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5 Inserting a premise

Observation 5.1. Let C(x) be a formula with no free variables other than x and let B be a formula
that does not contain x free. Then HA ` ¬B → ∃xC(x) implies that there exists a number n such that
HA ` ¬B→ C(n).

Proof. It is well known that HA is closed under the independence-of-premise-rule for negated premises
(see [Tro88], p. 138), that is, for any formula C(x) and any formula B, that does not contain x free,
we have that HA ` ¬B → ∃xC(x) implies HA ` ∃x (¬B→ C(x)). Since HA also obeys the numerical
existence property (see [Tro88], p. 142), it follows that there exists a number n such that HA ` ¬B →
C(n).

For a recursively enumerable extension of arithmetic T assume that T ` B → ∃xC(x) holds. Obser-
vation 5.1 raises questions about (the required conditions for) the existence of a number n such that
T ` B → C(n) holds. Is the existence of such a number ensured, regardless of the choice of T, B and
C(x)? In fact it is easy to see that in general a recursively enumerable extension of arithmetic can not
have the discussed property without fulfilling some further conditions. For instance PA is a recursively
enumerable extension of arithmetic, which clearly does not fulfill that property. But also HA does not
fulfill it, as the following observation shows.

Observation 5.2. Assume that for any formula C(x) with no free variables other than x and any formula
B, that does not contain x free, from HA ` B → ∃xC(x) follows that there exists a number n such that
HA ` B→ C(n). Then PA is inconsistent.

Proof. Clearly it holds HA ` ∃x
�

prfPA

�

x ,p⊥q
�

= 0
�

→ ∃x
�

prfPA

�

x ,p⊥q
�

= 0
�

(where prfPA(x , y) is
the provability function of PA). Now assume that there is a number n such that

HA ` ∃x
�

prfPA

�

x ,p⊥q
�

= 0
�

→ prfPA

�

n,p⊥q
�

= 0. (5.1)

If prfPA (n,p⊥q) = 0, then PA ` ⊥. Hence PA is inconsistent in this case.
Otherwise, if prfPA (n,p⊥q) 6= 0, then PA ` ¬

�

prfPA

�

n,p⊥q
�

= 0
�

, and therefore by the contrapositive

of (5.1) it holds PA ` ¬∃x
�

prfPA

�

x ,p⊥q
�

= 0
�

. But that implies by Gödels second incompleteness
theorem that PA is inconsistent.

It is well-known that HA obeys the disjunction and the numerical existence properties (see [Tro88], p.
142). Hence (assuming the consistency of PA and of T) observation 5.2 shows that even if the extension
of arithmetic T is recursively enumerable and has the disjunction and the numerical existence properties,
it is in general false that for any formula C(y) with y free and any formula B, which does not contain y
free, it holds that whenever T ` B→∃yC(y) there exists a number n such that T ` B→ C(n).
Now what are the required conditions for this property to hold? Some requirements that would suffice
are quite easy to see. For example, the proof of observation 5.1 makes it clear that if a recursively enumer-
able extension of arithmetic T obeys the disjunction property, it is sufficient to have the independence-
of-premise-rule for the premise B, i.e. the rule stating that T ` B→∃yC(y) implies T ` ∃y

�

B→ C(y)
�

.
Furthermore, if T obeys the disjunction property, it is easy to see that the requirement T ` B ∨¬B is also
sufficient.

Example 5.3. PA has both, the independence-of-premise-rule and the law-of-excluded-middle schema.
Moreover PA has the disjunction property for disjunctions of Σ0

1-sentences, because it is Σ0
1-complete

(see 7.4.20 in [Dal04]). Using corollary 4.5 by the above argumentation it follows that for any Σ0
1-

formula C(y) with only y free and any quantifier-free sentence B not containing y free, it holds that if
PA ` B → ∃yC(y) then there exists a number n such that PA ` B → C(n). By the proof of observation
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5.2 it follows that this is not the case if B is not quantifier-free. And this is also not the case if C(y) is
not a Σ0

1-formula, which can be shown using the Π0
1-formula

∀y
�

prfT

�

x ,p⊥q
�

= 0∨ prfT

�

y,p⊥q
�

6= 0
�

as C(y) (very similar to the proof of remark 4.7).

Another sufficient criterion for the discussed property to hold is presented in theorem 5.5. The theorem
and its proof run parallel to the statement and proof of theorem 3.3. Nevertheless, because of the
premise, some steps of the proof must be done syntactically now. Therefore the following lemma is
crucial in the proof.

Lemma 5.4. Let n be a number and let A be a formula. Then T ` prfT

�

n,pAq
�

= 0→ A.

Proof. If prfT (n,pAq) = 0, then T ` A, and so T ` prfT

�

n,pAq
�

= 0→ A.

If prfT (n,pAq) 6= 0, then T ` ¬
�

prfT

�

n,pAq
�

= 0
�

, that is T ` prfT

�

n,pAq
�

= 0 → ⊥, and therefore

T ` prfT

�

n,pAq
�

= 0→ A.

For a formula B let us abbreviate the discussed properties as follows.

DPB: For all sentences A1, A2 holds:
if T ` B→ A1 ∨ A2, then T ` B→ A1 or T ` B→ A2.

NEPB: For any formula P(y) with no free variable other than y holds:
if T ` B→∃yP(y), then there exists a number n such that T ` B→ P(n).

Theorem 5.5 (NEPB ⇔ DPB). Let T be a recursively enumerable extension of arithmetic and let B be a
formula. Then T fulfills NEPB if and only if T fulfills DPB.

Proof. Let T be a recursively enumerable extension of arithmetic which obeys DPB. One can show that T
also obeys NEPB by adapting the proof of theorem 3.3 to the present situation. One only has to replace
every self reference in every self referential sentence, which is used in the proof, with a reference to
an implication, which has B as the premise and the self referential sentence as the conclusion. This
approach is presented in detail in the following.
Let P

�

y
�

be a formula with no free variable other than y . Let AP (x) denote the formula

∃y
��

prfT

�

y, imp
�

pBq, neg (x)
��

= 0∨ P
�

y
�

�

∧∀z
�

prfT

�

z, imp
�

pBq, x
��

= 0→ y ≤ z
��

.

Let k := pAP

�

sub (x)
�

q. Then pAP

�

sub
�

k
��

q= sub (k).
Let Q

�

y
�

denote the formula prfT

�

y, imp
�

pBq, sub
�

k
���

= 0. Let AQ (x) be the same formula as

AP (x), except that Q is substituted for P. As before, choose a number l such that pAQ

�

sub
�

l
��

q =
sub (l).
Additionally observe,

pB→ AP

�

sub
�

k
��

q= imp
�

pBq,pAP

�

sub
�

k
��

q
�

= imp (pBq, sub (k)) ,
pB→ AQ

�

sub
�

l
��

q= imp
�

pBq,pAQ

�

sub
�

l
��

q
�

= imp (pBq, sub (l)) ,
pB→¬AQ

�

sub
�

l
��

q= imp
�

pBq, neg
�

pAQ

�

sub
�

l
��

q
��

= imp
�

pBq, neg (sub (l))
�

.

Let f , g, h be defined by

f
�

y
�

:= µx≤y
�

prfT
�

x , imp (pBq, sub (k))
�

= 0
�

,

g
�

y
�

:= µx≤y
�

prfT
�

x , imp (pBq, sub (l))
�

= 0
�

,

h
�

y
�

:= µx≤y
�

prfT
�

x , imp (pBq, sub (k))
�

· prfT
�

x , imp
�

pBq, neg (sub (l))
��

= 0
�

.
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The use of the present definitions of the functions f , g, h as well as the substitution of
imp

�

pBq, sub
�

k
��

, imp
�

pBq, sub
�

l
��

and imp
�

pBq, neg
�

sub
�

l
���

for sub
�

k
�

, sub
�

l
�

and

neg
�

sub
�

l
��

respectively in the derivations 1, 2, 3, 4, 5 from the proof of theorem 3.3 yield the
following

T ` ∃yP
�

y
�

→ AP

�

sub
�

k
��

∨ AQ

�

sub
�

l
��

∨¬AQ

�

sub
�

l
��

(except of the mentioned changes the deduction of this formula can be carried out identically as in the
proof of theorem 3.3).
Thus from T ` B → ∃yP

�

y
�

follows T ` B → AP

�

sub
�

k
��

∨ AQ

�

sub
�

l
��

∨ ¬AQ

�

sub
�

l
��

.

With the property DPB this implies that either T ` B→ AP

�

sub
�

k
��

or T ` B→ AQ

�

sub
�

l
��

or

T ` B→¬AQ

�

sub
�

l
��

holds. In the following each of this three cases will be considered separately.
So assume T ` B→∃yP

�

y
�

.

First case: If T ` B→ AP

�

sub
�

k
��

, then T ` B→ P (n) for some n.

Assume T ` B→ AP

�

sub
�

k
��

. Then there exists a number m, such that

T ` prfT

�

m, imp
�

pBq, sub
�

k
���

= 0.

Fix m. We have,
�

prfT

�

y, imp
�

pBq, neg
�

sub
�

k
����

= 0∨ P
�

y
�

�

∧∀z
�

prfT

�

z, imp
�

pBq, sub
�

k
���

= 0→ y ≤ z
�

(∧-E), (∀-E)
prfT

�

m, imp
�

pBq, sub
�

k
���

= 0→ y ≤ m
(→-E)

y ≤ m
(∧-I), (∃-I)

∃y
�

y ≤ m∧
�

prfT

�

y, imp
�

pBq, neg
�

sub
�

k
����

= 0∨ P
�

y
�

��

Hence by the (∃-E)-rule applied to AP

�

sub
�

k
��

it holds

T ` B→∃y
�

y ≤ m∧
�

prfT

�

y, imp
�

pBq, neg
�

sub
�

k
����

= 0∨ P
�

y
�

��

.

It follows

T ` B→∃y
�

y ≤ m∧ prfT

�

y, imp
�

pBq, neg
�

sub
�

k
����

= 0
�

∨ ∃y
�

y ≤ m∧ P
�

y
��

.

Thus by DPB holds that either

T ` B→∃y
�

y ≤ m∧ P
�

y
��

or

T ` B→∃y
�

y ≤ m∧ prfT

�

y, imp
�

pBq, neg
�

sub
�

k
����

= 0
�

.

First subcase: Suppose T ` B→∃y
�

y ≤ m∧ P
�

y
��

. By lemma 3.2 we have

T ` y ≤ m∧ P
�

y
�

→
∨

i≤m

P
�

i
�

.

It follows that T ` B→
∨

i≤m P
�

i
�

holds, and consequently T ` B→ P
�

i
�

holds by DPB for some i ≤ m.

Second subcase: Suppose T ` B→∃y
�

y ≤ m∧ prfT

�

y, imp
�

pBq, neg
�

sub
�

k
����

= 0
�

.
By lemma 3.2 we have,

T ` y ≤ m∧ prfT

�

y, imp
�

pBq, neg
�

sub
�

k
����

= 0→
∨

i≤m

prfT

�

i, imp
�

pBq, neg
�

sub
�

k
����

= 0.
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Hence by the (∃-E)-rule T ` B→
∨

i≤m prfT

�

i, imp
�

pBq, neg
�

sub
�

k
����

= 0 holds, and consequently

T ` B→ prfT

�

i, imp
�

pBq, neg
�

sub
�

k
����

= 0 holds by DPB for some i ≤ m.
Furthermore, by lemma 5.4 it holds

T ` prfT

�

i, imp
�

pBq, neg
�

sub
�

k
����

= 0→
�

B→¬AP

�

sub
�

k
���

,

Thus we have,

T ` B→
�

B→¬AP

�

sub
�

k
���

,

and consequently,

T ` B→¬AP

�

sub
�

k
��

.

But then T ` B→¬AP

�

sub
�

k
��

∧ AP

�

sub
�

k
��

, i.e. T ` B→⊥. So T ` B→ P (n) for any number n.
Hence in both subcases, T ` B→ P (n) holds for some number n.

Second case: If T ` B→ AQ

�

sub
�

l
��

, then T ` B→ P (n) for some n.

The same argumentation as in the first case, except that Q is substituted for P and l for k, yields
T ` B → Q (n) for some number n; that is, T ` B → prfT

�

n, imp
�

pBq, sub
�

k
���

= 0. Since by

lemma 5.4 T ` prfT

�

n, imp
�

pBq, sub
�

k
���

= 0 →
�

B→ AP

�

sub
�

k
���

holds, it follows T ` B →
�

B→ AP

�

sub
�

k
���

, and therefore T ` B→ AP

�

sub
�

k
��

. Now the claim follows by the first case.

Third case: If T ` B → ¬AQ

�

sub
�

l
��

, then T ` B → ⊥ (and consequently T ` B → P (n) for any
number n).

Assume T ` B→¬AQ

�

sub
�

l
��

. Then prfT
�

m, imp
�

pBq, neg (sub (l))
��

= 0 for some number m. Fix
m.
Suppose prfT

�

i, imp (pBq, sub (l))
�

= 0 for some i < m. Then T ` B→ AQ

�

sub
�

l
��

.

Hence T ` B→ AQ

�

sub
�

l
��

∧¬AQ

�

sub
�

l
��

, and so T ` B→⊥ in this case.
Otherwise, suppose prfT

�

i, imp (pBq, sub (l))
�

6= 0 for every i < m. Then

T `
∧

i<m

prfT

�

i, imp
�

pBq, sub
�

l
���

6= 0.

Furthermore, by lemma 3.2 we have

T `
∧

i<m

prfT

�

i, imp
�

pBq, sub
�

l
���

6= 0→
�

x < m→ prfT

�

x , imp
�

pBq, sub
�

l
���

6= 0
�

.

It follows that T ` x < m → prfT

�

x , imp
�

pBq, sub
�

l
���

6= 0 holds. The contraposition-rule and the
(∀-I)-rule applied to the contrapositive yield

T ` ∀x
�

prfT

�

x , imp
�

pBq, sub
�

l
���

= 0→ m≤ x
�

.

Furthermore it holds T ` prfT

�

m, imp
�

pBq, neg
�

sub
�

l
����

= 0 by assumption.
Hence we have,

T `
�

prfT

�

m, imp
�

pBq, neg
�

sub
�

l
����

= 0∨Q (m)
�

∧∀x
�

prfT

�

x , imp
�

pBq, sub
�

l
���

= 0→ m≤ x
�

.

And therefore by the (∃-I)-rule it follows that T ` AQ

�

sub
�

l
��

. Thus it holds

T ` B→ AQ

�

sub
�

l
��

∧¬AQ

�

sub
�

l
��

,

and consequently T ` B→⊥.

Thus T ` B→ P (n) for some n in either case. That is, if T obeys DPB, then T also obeys NEPB.
The converse can be easily shown by the use of lemma 2.3.
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6 Unprovability of the disjunction property

Throughout this section let T be a recursively enumerable extension of arithmetic. Interestingly, we
obtain as a consequence of theorem 3.3 the following: if T obeys the disjunction property and proves
its own disjunction property, then it also proves its own inconsistency. After the proof of theorem 3.3 is
formalized in HA0 this interesting assertion follows by means of Löb’s theorem.
First I prove Löb’s theorem.

Theorem 6.1 (Löb’s theorem). Let A be a sentence such that T ` PrT

�

pAq
�

→ A.
Then it holds T ` A.

Proof. Let A be a sentence and assume T ` PrT

�

pAq
�

→ A.
Let B denote the formula

PrT

�

imp
�

sub
�

pPrT

�

imp
�

sub (x) ,pAq
��

q
�

,pAq
��

.

Then it holds

sub
�

pPrT

�

imp
�

sub (x) ,pAq
��

q
�

= p
PrT

�

imp
�

sub
�

pPrT

�

imp
�

sub (x) ,pAq
��

q
�

,pAq
��

q

= pBq.

Thus by the identity axioms of T we have T ` B↔ PrT

�

imp
�

pBq,pAq
��

. That is,

T ` B↔ PrT

�

pB→ Aq
�

. (6.1)

By (D1) and (D3) it follows T ` PrT

�

pPrT

�

pB→ Aq
�

q
�

→ PrT

�

pBq
�

, and with (D2) this implies

T ` PrT

�

pB→ Aq
�

→ PrT

�

pBq
�

.

It follows

T ` PrT

�

pB→ Aq
�

→ PrT

�

pAq
�

,

because T ` PrT

�

pB→ Aq
�

→
�

PrT

�

pBq
�

→ PrT

�

pAq
��

by (D3).
So by the assumption on A it follows

T ` PrT

�

pB→ Aq
�

→ A.

Now this and (6.1) imply

T ` B→ A. (6.2)

An application of (D1) yields T ` PrT

�

pB→ Aq
�

, and so by (6.1) it follows T ` B. Hence T ` A holds by
(6.2).

We will also need the following useful lemma.

Lemma 6.2. Let A be a sentence, and let f be a 1-ary primitive recursive function. Then

T ` ∃xPrT

�

pprfT

�

f ( ẋ) ,pAq
�

= 0q
�

→ PrT

�

pAq
�

.

In particular, T ` ∃xPrT

�

pprfT

�

ẋ ,pAq
�

= 0q
�

→ PrT

�

pAq
�

.
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Proof. Let A be a sentence. It holds

T ` PrT

�

pprfT

�

f ( ẋ) ,pAq
�

= 0→ Aq
�

. (6.3)

To show (6.3) I follow the the proof, which is given in [Smo82], section 4.1.6.
Since T ` A→

�

prfT

�

f (x),pAq
�

= 0→ A
�

, it holds by (D1∗) and (D3∗) that

T ` PrT

�

pAq
�

→ PrT

�

pprfT

�

f ( ẋ) ,pAq
�

= 0→ Aq
�

. (6.4)

Furthermore, it clearly holds T ` prfT

�

f (x),pAq
�

6= 0→
�

prfT

�

f (x),pAq
�

= 0→ A
�

. So, by (D1∗) and
(D3∗) it follows

T ` PrT

�

pprfT

�

f ( ẋ) ,pAq
�

6= 0q
�

→ PrT

�

pprfT

�

f ( ẋ) ,pAq
�

= 0→ Aq
�

. (6.5)

Now the following derivation establishes (6.3).

�

prfT

�

f (x),pAq
�

= 0
�

(∃-I)
PrT

�

pAq
�

(6.4)
PrT

�

pprfT

�

f ( ẋ) ,pAq
�

= 0→ Aq
�

�

prfT

�

f (x),pAq
�

6= 0
�

⊗
PrT

�

pprfT

�

f ( ẋ) ,pAq
�

6= 0q
�

(6.5)
PrT

�

pprfT

�

f ( ẋ) ,pAq
�

= 0→ Aq
�

(∨-E)
PrT

�

pprfT

�

f ( ẋ) ,pAq
�

= 0→ Aq
�

where the step ⊗ uses lemma 2.12 on the 1-ary primitive recursive function with input x , which is equal
to 0 if and only if prfT

�

f (x),pAq
�

6= 0.
Thus (6.3) is shown. An application of (D3∗) to this statement now yields

T ` PrT

�

pprfT

�

f ( ẋ) ,pAq
�

= 0q
�

→ PrT

�

pAq
�

.

This implies the assertion.

Now I will formalize theorem 3.3 in T (in particular, it can be done in HA0).

Lemma 6.3. If T ` PrT

�

pA∨ Bq
�

→ PrT

�

pAq
�

∨ PrT

�

pBq
�

for any sentences A and B, then T `

PrT

�

p∃yP(y)q
�

→ ∃wPrT

�

p∃y
�

y ≤ ẇ ∧ P
�

y
��

q
�

for any formula P(y) with no free variable other
than y .

Proof. The following is an adaptation of the proof of theorem 3.3.
Let P(y) be a formula with no free variable other than y . As in the proof of theorem 3.3, let AP (x)
denote the formula

∃y
��

prfT
�

y, neg (x)
�

= 0∨ P
�

y
�

�

∧∀z
�

prfT (z, x) = 0→ y ≤ z
��

.

Again let Q
�

y
�

denote the formula prfT

�

y, sub
�

k
��

= 0, and let AQ (x) be the same formula as AP (x),
except that Q is substituted for P. Also as in the proof of theorem 3.3, choose numbers k and l such that
pAP

�

sub
�

k
��

q= sub (k) and pAQ

�

sub
�

l
��

q= sub (l).
Then we have,

T ` ∃yP
�

y
�

→ AP

�

sub
�

k
��

∨ AQ

�

sub
�

l
��

∨¬AQ

�

sub
�

l
��

,
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as shown in the proof of theorem 3.3 (denoted there by claim 1).
By (D1), (D3) and the assumption it follows

T ` PrT

�

p∃yP
�

y
�

q
�

→ PrT

�

pAP

�

sub
�

k
��

q
�

∨ PrT

�

pAQ

�

sub
�

l
��

q
�

∨ PrT

�

p¬AQ

�

sub
�

l
��

q
�

. (6.6)

The disjunction from (6.6) can be treated in the same manner as the distinction in the proof of theorem
3.3. Namely, analogous to the three cases from the proof of theorem 3.3, three statements (∗), (∗∗) and
(∗ ∗ ∗) are shown in the following.

First I prove:

(∗) T ` PrT

�

pAP

�

sub
�

k
��

q
�

→∃wPrT

�

p∃y
�

y ≤ ẇ ∧ P
�

y
��

q
�

.

We have,

��

prfT

�

y, neg
�

sub
�

k
���

= 0∨ P
�

y
�

�

∧∀z
�

prfT

�

z, sub
�

k
��

= 0→ y ≤ z
��(2) �

prfT

�

w, sub
�

k
��

= 0
�(1)

y ≤ w ∧
�

prfT

�

y, neg
�

sub
�

k
���

= 0∨ P
�

y
�

�

�

y ≤ w ∧ prfT

�

y, neg
�

sub
�

k
���

= 0
�

∨
�

y ≤ w ∧ P
�

y
��

∃y
��

y ≤ w ∧ prfT

�

y, neg
�

sub
�

k
���

= 0
�

∨
�

y ≤ w ∧ P
�

y
��

�

∃y
�

y ≤ w ∧ prfT

�

y, neg
�

sub
�

k
���

= 0
�

∨ ∃y
�

y ≤ w ∧ P
�

y
��

(→-I)(1)
prfT

�

w, sub
�

k
��

= 0→∃y
�

y ≤ w ∧ prfT

�

y, neg
�

sub
�

k
���

= 0
�

∨ ∃y
�

y ≤ w ∧ P
�

y
��

(∃-E)(2), (→-I)
AP

�

sub
�

k
��

→
�

prfT

�

w, sub
�

k
��

= 0→∃y
�

y ≤ w ∧ prfT

�

y, neg
�

sub
�

k
���

= 0
�

∨ ∃y
�

y ≤ w ∧ P
�

y
��

�

Hence by (D1∗) and (D3∗) it follows

T ` PrT

�

pAP

�

sub
�

k
��

q
�

→ PrT

�

p
�

prfT

�

ẇ, sub
�

k
��

= 0→∃y
�

y ≤ ẇ ∧ prfT

�

y, neg
�

sub
�

k
���

= 0
�

∨ ∃y
�

y ≤ ẇ ∧ P
�

y
��

�

q
�

,

and consequently by (D3∗) and the assumption it holds

T ` PrT

�

pAP

�

sub
�

k
��

q
�

→
�

PrT

�

pprfT

�

ẇ, sub
�

k
��

= 0q
�

→ PrT

�

p∃y
�

y ≤ ẇ ∧ prfT

�

y, neg
�

sub
�

k
���

= 0
�

q
�

∨ PrT

�

p∃y
�

y ≤ ẇ ∧ P
�

y
��

q
�
�

. (6.7)

Let us proceed with another derivation.

PrT

�

pAP

�

sub
�

k
��

q
�

∃w
�

prfT

�

w,pAP

�

sub
�

k
��

q
�

= 0
�

�

prfT

�

w,pAP

�

sub
�

k
��

q
�

= 0
�

(lemma 2.12)

PrT

�

p
prfT

�

ẇ,pAP

�

sub
�

k
��

q
�

= 0
q
�

∃wPrT

�

p
prfT

�

ẇ,pAP

�

sub
�

k
��

q
�

= 0
q
�

(∃-E)

∃wPrT

�

p
prfT

�

ẇ,pAP

�

sub
�

k
��

q
�

= 0
q
�

∃wPrT

�

pprfT

�

ẇ, sub
�

k
��

= 0q
�
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That is,

T ` PrT

�

pAP

�

sub
�

k
��

q
�

→∃wPrT

�

pprfT

�

ẇ, sub
�

k
��

= 0q
�

. (6.8)

Now (6.7) and (6.8) imply

T ` PrT

�

pAP

�

sub
�

k
��

q
�

→∃wPrT

�

p∃y
�

y ≤ ẇ ∧ P
�

y
��

q
�

∨ ∃wPrT

�

p∃y
�

y ≤ ẇ ∧ prfT

�

y, neg
�

sub
�

k
���

= 0
�

q
�

, (6.9)

Let f (y) := µx≤y
�

prfT
�

x , neg (sub (k))
�

= 0
�

. Then it holds that

T ` PrT

�

p∃y
�

y ≤ ẇ ∧ prfT

�

y, neg
�

sub
�

k
���

= 0
�

q
�

→ PrT

�

pprfT

�

f (ẇ) , neg
�

sub
�

k
���

= 0q
�

, (6.10)

as is shown by the following.

∃y
�

y ≤ w ∧ prfT

�

y, neg
�

sub
�

k
���

= 0
�

�

y ≤ w ∧ prfT

�

y, neg
�

sub
�

k
���

= 0
�

(lemma 2.7 (ii))
y ≤ w ∧ prfT

�

f
�

y
�

, neg
�

sub
�

k
���

= 0
(lemma 2.7 (v))

f
�

y
�

≤ f (w)∧ prfT

�

f
�

y
�

, neg
�

sub
�

k
���

= 0
(lemma 2.7 (iv))

prfT

�

f (w) , neg
�

sub
�

k
���

= 0
(∃-E)

prfT

�

f (w) , neg
�

sub
�

k
���

= 0

Thus T ` ∃y
�

y ≤ w ∧ prfT

�

y, neg
�

sub
�

k
���

= 0
�

→ prfT

�

f (w) , neg
�

sub
�

k
���

= 0. So (6.10)
follows by (D1∗) and (D3∗).
With (6.10) we have,

T ` PrT

�

p∃y
�

y ≤ ẇ ∧ prfT

�

y, neg
�

sub
�

k
���

= 0
�

q
�

→ PrT

�

pprfT

�

f (ẇ) , neg
�

sub
�

k
���

= 0q
�

(∃-I)
T ` PrT

�

p∃y
�

y ≤ ẇ ∧ prfT

�

y, neg
�

sub
�

k
���

= 0
�

q
�

→∃wPrT

�

pprfT

�

f (ẇ) , neg
�

sub
�

k
���

= 0q
�

T ` ∃wPrT

�

p∃y
�

y ≤ ẇ ∧ prfT

�

y, neg
�

sub
�

k
���

= 0
�

q
�

→∃wPrT

�

pprfT

�

f (ẇ) , neg
�

sub
�

k
���

= 0q
�

(lemma 6.2)
T ` ∃wPrT

�

p∃y
�

y ≤ ẇ ∧ prfT

�

y, neg
�

sub
�

k
���

= 0
�

q
�

→ PrT

�

neg
�

sub
�

k
���

T ` ∃wPrT

�

p∃y
�

y ≤ ẇ ∧ prfT

�

y, neg
�

sub
�

k
���

= 0
�

q
�

→ PrT

�

p¬AP

�

sub
�

k
��

q
�

T ` ∃wPrT

�

p∃y
�

y ≤ ẇ ∧ prfT

�

y, neg
�

sub
�

k
���

= 0
�

q
�

→ PrT

�

pAP

�

sub
�

k
��

→⊥q
�

(cor. 2.14)
T ` ∃wPrT

�

p∃y
�

y ≤ ẇ ∧ prfT

�

y, neg
�

sub
�

k
���

= 0
�

q
�

→ PrT

�

pAP

�

sub
�

k
��

→∃y
�

y ≤ ẇ ∧ P
�

y
��

q
�

Now (D3∗) yields

T ` ∃wPrT

�

p∃y
�

y ≤ ẇ ∧ prfT

�

y, neg
�

sub
�

k
���

= 0
�

q
�

→
�

PrT

�

pAP

�

sub
�

k
��

q
�

→ PrT

�

p∃y
�

y ≤ ẇ ∧ P
�

y
��

q
�
�

. (6.11)

Statements 6.9 and 6.11 finally imply (∗).

37



The next important statement is

(∗∗) T ` PrT

�

pAQ

�

sub
�

l
��

q
�

→∃wPrT

�

p∃y
�

y ≤ ẇ ∧ P
�

y
��

q
�

.

Let us make (∗∗) clear.
By the definition of AQ

�

sub
�

l
��

and by the proof of (∗) we have,

T ` PrT

�

pAQ

�

sub
�

l
��

q
�

→∃wPrT

�

p∃y
�

y ≤ ẇ ∧ prfT

�

y, sub
�

k
��

= 0
�

q
�

. (6.12)

Let g(y) := µx≤y
�

prfT (x , sub (k)) = 0
�

. Then it holds that

T ` PrT

�

p∃y
�

y ≤ ẇ ∧ prfT

�

y, sub
�

k
��

= 0
�

q
�

→ PrT

�

pprfT

�

g (ẇ) , sub
�

k
��

= 0q
�

,

which can be proven in exactly the same manner as (6.10).
It follows

T ` PrT

�

p∃y
�

y ≤ ẇ ∧ prfT

�

y, sub
�

k
��

= 0
�

q
�

→ PrT

�

pprfT

�

g (ẇ) ,pAP

�

sub
�

k
��

q
�

= 0q
�

(∃-I)
T ` PrT

�

p∃y
�

y ≤ ẇ ∧ prfT

�

y, sub
�

k
��

= 0
�

q
�

→∃wPrT

�

pprfT

�

g (ẇ) ,pAP

�

sub
�

k
��

q
�

= 0q
�

T ` ∃wPrT

�

p∃y
�

y ≤ ẇ ∧ prfT

�

y, sub
�

k
��

= 0
�

q
�

→∃wPrT

�

pprfT

�

g (ẇ) ,pAP

�

sub
�

k
��

q
�

= 0q
�

(lemma 6.2)
T ` ∃wPrT

�

p∃y
�

y ≤ ẇ ∧ prfT

�

y, sub
�

k
��

= 0
�

q
�

→ PrT

�

pAP

�

sub
�

k
��

q
�

(∗)
T ` ∃wPrT

�

p∃y
�

y ≤ ẇ ∧ prfT

�

y, sub
�

k
��

= 0
�

q
�

→∃wPrT

�

p∃y
�

y ≤ ẇ ∧ P
�

y
��

q
�

This and (6.12) yield (∗∗).

Finally I prove:

(∗ ∗ ∗) T ` PrT

�

p¬AQ

�

sub
�

l
��

q
�

→∃wPrT

�

p∃y
�

y ≤ ẇ ∧ P
�

y
��

q
�

.

It holds that

T ` PrT

�

p¬AQ

�

sub
�

l
��

q
�

→∃yPrT

�

pprfT

�

ẏ , neg
�

sub
�

l
���

= 0∨Q
�

ẏ
�q
�

(6.13)

by the following derivation.

PrT

�

p¬AQ

�

sub
�

l
��

q
�

�

prfT

�

y,p¬AQ

�

sub
�

l
��

q
�

= 0
�

(lemma 2.12)

∃yPrT

�

p
prfT

�

ẏ ,p¬AQ

�

sub
�

l
��

q
�

= 0
q
�

(cor. 2.14)

∃yPrT

�

p
prfT

�

ẏ ,p¬AQ

�

sub
�

l
��

q
�

= 0∨Q
�

ẏ
�q
�

(∃-E)

∃yPrT

�

p
prfT

�

ẏ ,p¬AQ

�

sub
�

l
��

q
�

= 0∨Q
�

ẏ
�q
�

∃yPrT

�

pprfT

�

ẏ , neg
�

sub
�

l
���

= 0∨Q
�

ẏ
�q
�
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Let h(y) := µx≤y
�

prfT (x , sub (l)) = 0
�

. We have,

�

prfT

�

h
�

y
�

, sub
�

l
��

6= 0
�

(lemma 2.7(iv))
h
�

y
�

= 0

�

z ≤ y
�

(lemma 2.7(v))
h(z)≤ h

�

y
�

h(z) = h
�

y
�

prfT

�

h
�

y
�

, sub
�

l
��

6= 0

prfT

�

h(z) , sub
�

l
��

6= 0
(lemma 2.7(ii))

prfT

�

z, sub
�

l
��

6= 0

z ≤ y → prfT

�

z, sub
�

l
��

6= 0

prfT

�

z, sub
�

l
��

= 0→ y < z

prfT

�

z, sub
�

l
��

= 0→ y ≤ z

∀z
�

prfT

�

z, sub
�

l
��

= 0→ y ≤ z
�

prfT

�

h
�

y
�

, sub
�

l
��

6= 0→∀z
�

prfT

�

z, sub
�

l
��

= 0→ y ≤ z
�

By (D1∗) and (D3∗) it follows

T ` PrT

�

pprfT

�

h
�

ẏ
�

, sub
�

l
��

6= 0q
�

→ PrT

�

p∀z
�

prfT

�

z, sub
�

l
��

= 0→ ẏ ≤ z
�

q
�

.

An application of lemma 2.12 yields

T ` prfT

�

h
�

y
�

, sub
�

l
��

6= 0→ PrT

�

p∀z
�

prfT

�

z, sub
�

l
��

= 0→ ẏ ≤ z
�

q
�

. (6.14)

Using this statement the following derivation is carried out.

�

PrT

�

pprfT

�

ẏ , neg
�

sub
�

l
���

= 0∨Q
�

ẏ
�

q
��(2)

�

prfT

�

h
�

y
�

, sub
�

l
��

6= 0
�(1)

(6.14)
PrT

�

p∀z
�

prfT

�

z, sub
�

l
��

= 0→ ẏ ≤ z
�

q
�

PrT

�

pprfT

�

ẏ , neg
�

sub
�

l
���

= 0∨Q
�

ẏ
�

q
�

∧ PrT

�

p∀z
�

prfT

�

z, sub
�

l
��

= 0→ ẏ ≤ z
�

q
�

(cor. 2.14)
PrT

�

p
�

prfT

�

ẏ , neg
�

sub
�

l
���

= 0∨Q
�

ẏ
�

�

∧∀z
�

prfT

�

z, sub
�

l
��

= 0→ ẏ ≤ z
�

q
�

⊗
PrT

�

p∃y
��

prfT

�

y, neg
�

sub
�

l
���

= 0∨Q
�

y
�

�

∧∀z
�

prfT

�

z, sub
�

l
��

= 0→ y ≤ z
��

q
�

PrT

�

pAQ

�

sub
�

l
��

q
�

(→-I)(1)

prfT

�

h
�

ẏ
�

, sub
�

l
��

6= 0→ PrT

�

pAQ

�

sub
�

l
��

q
�

(∃-E)(2), (→-I)
∃yPrT

�

pprfT

�

ẏ , neg
�

sub
�

l
���

= 0∨Q
�

ẏ
�

q
�

→
�

prfT

�

h
�

y
�

, sub
�

l
��

6= 0→ PrT

�

pAQ

�

sub
�

l
��

q
��

where the step ⊗ uses (D1∗) and (D3∗) applied to the formula
�

prfT

�

y, neg
�

sub
�

l
���

= 0∨Q
�

y
�

�

∧∀z
�

prfT

�

z, sub
�

l
��

= 0→ y ≤ z
�

→

∃y
�

prfT

�

y, neg
�

sub
�

l
���

= 0∨Q
�

y
�

�

∧∀z
�

prfT

�

z, sub
�

l
��

= 0→ y ≤ z
�

.

This derivation and (6.13) yield

T ` PrT

�

p¬AQ

�

sub
�

l
��

q
�

→
�

prfT

�

h
�

y
�

, sub
�

l
��

6= 0→ PrT

�

pAQ

�

sub
�

l
��

q
��

. (6.15)

Having this, it is easy to see that

T ` PrT

�

p¬AQ

�

sub
�

l
��

q
�

→ PrT

�

pAQ

�

sub
�

l
��

q
�

. (6.16)

The following derivation makes this clear.
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PrT

�

p¬AQ

�

sub
�

l
��

q
�

�

prfT

�

h
�

y
�

, sub
�

l
��

6= 0
�(1)

(6.15)
PrT

�

pAQ

�

sub
�

l
��

q
�

�

prfT

�

h
�

y
�

, sub
�

l
��

= 0
�(1)

prfT

�

h
�

y
�

,pAQ

�

sub
�

l
��

q
�

= 0

∃zprfT

�

z,pAQ

�

sub
�

l
��

q
�

= 0

PrT

�

pAQ

�

sub
�

l
��

q
�

(∨-E)(1)

PrT

�

pAQ

�

sub
�

l
��

q
�

Now using (6.16), the statement (∗ ∗ ∗) can be easily derived:

PrT

�

p¬AQ

�

sub
�

l
��

q
�

(6.16)
PrT

�

pAQ

�

sub
�

l
��

q
�

PrT

�

p¬AQ

�

sub
�

l
��

q
�

PrT

�

pAQ

�

sub
�

l
��

q
�

∧ PrT

�

p¬AQ

�

sub
�

l
��

q
�

PrT

�

pAQ

�

sub
�

l
��

q
�

∧ PrT

�

pAQ

�

sub
�

l
��

→⊥q
�

(cor. 2.14)
PrT

�

pAQ

�

sub
�

l
��

q
�

∧ PrT

�

pAQ

�

sub
�

l
��

→∃y
�

y ≤ ẇ ∧ P
�

y
��q
�

(D3∗)
PrT

�

p∃y
�

y ≤ ẇ ∧ P
�

y
��

q
�

∃wPrT

�

p∃y
�

y ≤ ẇ ∧ P
�

y
��

q
�

Thus the statements (∗), (∗∗) and (∗ ∗ ∗) are proven.

The assertion T ` PrT

�

p∃yP(y)q
�

→ ∃wPrT

�

p∃y
�

y ≤ ẇ ∧ P
�

y
��

q
�

follows from (6.6), (∗), (∗∗)
and (∗ ∗ ∗).

Now all the preparation is done, so the main result of this section can be presented.

Theorem 6.4. Let T be a recursively enumerable extension of arithmetic, such that for all sentences A, B it
holds T ` PrT

�

pA∨ Bq
�

→ PrT

�

pAq
�

∨ PrT

�

pBq
�

.

Then T ` PrT

�

p⊥q
�

. If additionally T obeys the disjunction property, then T ` ⊥.

Proof. By lemma 6.3 it holds

T ` PrT

�

pPrT

�

p⊥q
�

q
�

→∃wPrT

�

p∃y
�

y ≤ ẇ ∧ prfT

�

y,p⊥q
�

= 0
�

q
�

. (6.17)

Let f (y) := µx≤y

�

prfT

�

y,p⊥q
�

= 0
�

. We have,

∃y
�

y ≤ w ∧ prfT

�

y,p⊥q
�

= 0
�

�

y ≤ w ∧ prfT

�

y,p⊥q
�

= 0
�

(lemma 2.7 (ii))
y ≤ w ∧ prfT

�

f
�

y
�

,p⊥q
�

= 0
(lemma 2.7 (v))

f
�

y
�

≤ f (w)∧ prfT

�

f
�

y
�

,p⊥q
�

= 0
(lemma 2.7)

prfT

�

f (w) ,p⊥q
�

= 0
(∃-E)

prfT

�

f (w) ,p⊥q
�

= 0
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Thus T ` ∃y
�

y ≤ w ∧ prfT

�

y,p⊥q
�

= 0
�

→ prfT

�

f (w) ,p⊥q
�

= 0. It follows by (D1∗) and (D3∗) that

T ` PrT

�

p∃y
�

y ≤ ẇ ∧ prfT

�

y,p⊥q
�

= 0
�

q
�

→ PrT

�

pprfT

�

f (ẇ) ,p⊥q
�

= 0q
�

,

consequently by the (∃-I)-rule

T ` PrT

�

p∃y
�

y ≤ ẇ ∧ prfT

�

y,p⊥q
�

= 0
�

q
�

→∃wPrT

�

pprfT

�

f (ẇ) ,p⊥q
�

= 0q
�

,

and so

T ` ∃wPrT

�

p∃y
�

y ≤ ẇ ∧ prfT

�

y,p⊥q
�

= 0
�

q
�

→∃wPrT

�

pprfT

�

f (ẇ) ,p⊥q
�

= 0q
�

.

Now an application of lemma 6.2 gives

T ` ∃wPrT

�

p∃y
�

y ≤ ẇ ∧ prfT

�

y,p⊥q
�

= 0
�

q
�

→ PrT

�

p⊥q
�

. (6.18)

The statements (6.17) and (6.18) imply

T ` PrT

�

pPrT

�

p⊥q
�

q
�

→ PrT

�

p⊥q
�

.

The assertion T ` PrT

�

p⊥q
�

follows by theorem 6.1.

If additionally T has the disjunction property, then by theorem 3.3 T also obeys the numerical existence
property. Hence the statement T ` PrT

�

p⊥q
�

implies that there exists a number n, such that T `
prfT

�

n,p⊥q
�

= 0 holds. Consequently prfT (n,p⊥q) = 0, that is, T ` ⊥ holds.
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